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ASTRACT 

   With the development of the radio frequency integrated circuit (RFIC), contactless radio 

frequency identification (RFID) technology, as one of the fastest growing sectors of 

automatic identification procedures (Auto-ID), gains broad application in tracking assets in 

supply chain management. However, one of the largest challenges for the RFID industry is 

that the ultra high frequency (UHF) RFID transponder doesn’t function well when it is 

applied to any conductive surface. In this dissertation, the communication principle of 

wireless transceivers is illustrated. As one fast-growing application field of wireless 

communication, the distinct operating principle of the RFID is clarified. The factors that limit 

the reading/writing distance of UHF RFID transponders are discussed in detail. Some 

potential solutions are proposed and verified. One nondestructive solution is to apply a 

metamaterial such as a frequency selective surface (FSS) or a mushroom-like 

electromagnetic bandgap (EBG) surface to block the transmission of electromagnetic waves 

from the RFID antenna to the metal ground and thus boost the antenna radiation efficiency. 

For this solution, a new design approach suppressing the TM wave but supporting the TE 

wave is demonstrated. Another low-cost solution is to use an inexpensive substrate material 

and obtain the most power-efficient antenna structure. More than six potentially patentable 

planar RFID transponder antennas were invented, designed and tested. Their compact size, 

low profile, low cost and superior performance paves the way for the RFID industry to 

expand their market share in the near future. 
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CHAPTER 1 OVERVIEW 

 

1.1 Introduction 

  Automatic identification procedures (Auto-ID) extract distinct information about people, 

animals and a variety of items. It includes the barcode system, optical character recognition 

(OCR), smart cards, RFID and voice and fingerprinting identifications. Smart cards and 

RFID systems have their maximum data capacity due to the development of integrated 

circuits. Most of the above identification procedures work over short distances (less than 50 

cm). It is no surprise that by virtue of RF technology, the RFID, with the capability to read 

and write information remotely, will dominate the Auto-ID market in the near future.  

 

1.1.1 A simple history of RFID 

  Electromagnetic energy exists everywhere in the universe. Although electromagnetic energy 

existed at the very beginning of our existence, it took a long journey for us to understand it 

and further learn how to harness it. Since Maxwell unified the equations to describe the 

phenomena of electricity and magnetism, our ability to utilize the hidden energy grew.  An 

early paper by Harry Stockman titled “Communication by Means of Reflected Power” [1] 

predicted that "…considerable research and development work has to be done before the 

remaining basic problems in reflected-power communication are solved, and before the field 

of useful applications is explored." This paper explored the theoretical background about 

using backscattering to communicate remotely.  

  Electromagnetic waves can be applied to carry information and transmit through a long 
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distance. It has been applied to wireless communication and remote sensing.  As a part of 

remote sensing or remote identification, the predecessor to RFID was first reported as an 

espionage tool which was invented by Leon Theremin in 1946 [2]. It can modulate incident 

radio waves with audio information and re-send them. 

  Since the 1970s, with the development of radio frequency integrated circuits and antenna 

theory, UHF passive and active RFID by using backscattering to communicate remotely 

became possible.  Since the 1980s, the commercial application of RFID began and has 

exploded. In 21st century, radio frequency CMOS integrated circuits became mainstream, 

which further lowers the cost to implement a RFID system. In 2008, the major semiconductor 

companies have adopted 45 nm CMOS technology to design wireless transceivers, which 

further reduces the cost of RF transceiver. It can be seen in the near future, with a reduced 

cost to adopt a RFID system, the applications of RFID will expand further. For passive and 

active UHF RFID tags, one of the major challenges is to search for faster nonvolatile 

memory to replace electrically erasable programmable read-only memory (EEPROM), which 

should be suitable for the low power characteristics of RFID.  Since the transponder size,  

Table 1.1 Time table of the RFID history 

Time The development of RFID 
1940 ~ 1950 Radar technology becomes mature due to the effort of World war II. 

RFID is invented in 1946. 
1950 ~ 1960 Theoretical and laboratory explorations of RFID technology.  
1960 ~ 1970  The theory of RFID is developed. The application trial starts. 
1970 ~ 1980  The early implementation of RFID 
1980 ~ 1990 Commercial applications of RFID grow 
1990 ~ 2000 RFID standards emerge.  
2000 ~ 2008 600nm~45nm CMOS RF transceiver dominates the market. The 

estimated RFID market is $ 7.26 billion in 2008 [3]. 
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performance and cost are dominantly determined by the RFID antennas, the design of 

antennas becomes more important.  A simple time table for RFID history modified from [2] 

is shown in Table. 1.1.   

 

1.1.2 Types of RFID 

  RFID tags or transponders can be named as passive or active. A passive RFID tag means 

the device doesn’t have a fixed DC power supply. The power needed to power the RFID 

transponder is extracted from the incident electromagnetic wave. An active RFID tag is given 

a fixed DC power supply and thus has a longer reading range. The wireless communication 

for an active RFID is not very sensitive to the environment. However considering the high 

volume demand for supply chain management, the cost of an active RFID in the range of a 

few dollars per unit is still too high. A passive RFID tag is the potential alternative to replace 

the traditional barcode system due to its low cost ($0.05 ~ $ 0.2 each) and superior 

performance.  

  RFID can operate in various frequency bands, which covers from 0~135 KHz, and the ISM 

(Industrial-Scientific-Medical) frequency ranges like 6.78 MHz, 13.56 MHz, 27.125 MHz, 

40.68 MHz, 433.92 MHz, 869.0 MHz (Europe),  915.0 MHz (US),  2.45 GHz, 5.8 GHz and 

24.125 GHz [4].  Although the market share of the HF RFID (13.56 MHz) is the largest 

among all of the RFIDs, the market of UHF (ultra high frequency) RFID transponders grew 

quickly due to the perfect compromise between reading distance and antenna size.  

  HF RFID utilizes the effects of magnetic coupling and load modulation to realize near-field 

communication. In the reactive near field region, which is defined as 30  [5],   .62 / 0D rλ > >
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the magnetic field is inversely proportional to , where D  is the maximum dimension of 

the antenna, 

3r

λ  is the wavelength of the radiated electromagnetic wave, and r is the distance 

from the radiation source (antenna) to the observer. Therefore the magnetic field decreases 

over distance at a rate of 60 dB per decade. The maximum readable range for a RFID tag at 

low frequency will be low (typically less than 1 m).  The inductive coupling between the 

reader coil and the transponder antenna can be effectively modeled as a transformer with 

mutual inductance. A systematic analysis will be simplified by this equivalent circuit 

approach. Once the load impedance is varied due to the load modulation, the effects will be 

shown as a variance of the input impedance at the source terminal of the transformer.  

  In the far field (Fraunhofer) region, which is defined by 22 /r D λ>  [5], the field decays at 

the rate of 1/ . Therefore the fields decay over distance at a rate of 20 dB per decade. By 

virtue of backscattering technology, the reading/writing distance can be much larger (about 

10 meters). The data rate can be much higher due to the larger bandwidth in the UHF 

frequency band. In this dissertation, we concentrate on the UHF RFID transponders.  

r

 
 
1.1.3 Market of RFID 

  As one of the fastest growing sectors of automatic identification procedures (Auto-ID), 

contactless radio frequency identification (RFID) technology has gained broad application 

for tracking assets in supply chain management. More retailers are replacing the traditional 

barcode with an RFID tag to save their labor and cost. It has also become an integral part of 

our life.  It can be used to track animals or library books, control the entrance to buildings or 

manage traffic.  
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  Compared with the optical barcode system, RFID has the advantage of a much longer 

reading range, is reprogrammable, and has a larger information storage capacity. In the 

semiconductor industry, with a smaller feature size, a lower cost of the chip is expected. The 

unit cost of a RFID chip has continuously decreased. As one can imagine, when the cost of a 

RFID tag becomes comparable to a barcode, RFID would fully replace the barcode 

eventually. According to ID TechEx, the trend of replacing the barcode has now appeared 

since the RFID market is going to reach 7.26 billion in 2008 [3]. 

 

1.1.4 Basic principle of RFID  

  As a method of wireless communication, a RFID system includes a RFID reader, a RFID 

chip and a RFID transponder antenna. The data or information stored in a silicon chip can be 

retrieved by a RFID reader through the RFID transponder antenna. A low cost passive RFID 

transponder doesn’t include any internal DC power supply.  The RFID reader sends both 

information and power to the RFID tag by virtue of electromagnetic waves. The RFID tag is  

 

RFID Reader

RFID Tag

RFID chip

data

power

data

 

Fig. 1.1 A simplified RFID system 
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able to receive the incident radio frequency (RF) power and extract the data sent by the RFID 

reader by demodulation. In the reading stage, the data stored in the chip modulates the 

impedance of the RFID tag antenna so that the backscattering waves are different for a digit  

“0” or a digit “1”. Then the reader retrieves the data sent by the RFID transponder. Fig. 1.1  

shows the simplified RFID system.  

 

1.1.5 RFID transponder on metal surface 

  As one of the largest challenges for the radio frequency identification (RFID) industry, the 

RIFD tag can’t be read with dipole type antennas when the antennas are attached to a 

conductive surface. Fig. 1.2 shows an example of a passive RFID tag, which is unable to be 

read if it is placed above a conductive surface.  

 

   

Fig. 1.2 A passive RFID tag (Courtesy of Alien Technology) 

 

   The reason why the dipole type RFID tag can not be read is simply explained in Fig. 1.3, 

which shows that the image dipole below the metal surface has an equal but opposite current 

from that of the original dipole. If the space between the dipole and its image is very small 

(much less than one wavelength), then the total effective current approaches zero. Therefore 

the total radiation field is negligible. The RFID is then unable to capture data and power from 

the reader.  
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+_

-+
Image Dipole Antenna

Original Dipole Antenna

I

-I

Interface

 

Fig. 1.3 A dipole antenna above a perfect electric conductor (PEC) and its image 

 

1.1.6 Goal of this dissertation 

  There is a big portion of the RFID market which needs the RFID attached to metal or 

conductive surfaces. It is well known that the dipole type antenna is unable to radiate well on 

metal. There is no good available solution for this problem. In fall of 2005, as a major 

provider for automatic ID tags, Metalcraft I.D. Plates and Labels desired to find a solution to 

this problem. Metalcraft and ISU’s IPRT Company Assistance co-funded a research project, 

which resulted in a major portion of this dissertation. Our goal was to develop a method to 

allow a RFID tag to work on metal. The major requirements are that the RFID tag on metal 

should maintain a good reading range (>10 feet). More importantly, the solution should be 

low cost and have a low profile.  

 

1.2 Basic antenna theory 

  A good understanding of how a dipole antenna radiates was necessary for solving the metal 

surface mounted RFID problem. The well-known Maxwell’s equations for time harmonic 

fields in phasor form are written as, 
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    jω∇× = −E B      (1.1) 

jω∇× =H D+ J      (1.2) 

eρ∇⋅ =D       (1.3) 

0∇⋅ =B       (1.4) 

  The current continuity equation can be derived from (1.1) to (1.4), 

ejωρ∇⋅ = −J       (1.5) 

   From those equations, it is obvious that if the volume current density and material 

properties are known, the electric field intensity 

J

E  and magnetic field intensityH can be 

derived by solving the differential equations with the aid of constitutive relations 

μB = H and εD = E [6]. An approximate approach to find the analytical solution for 

antenna parameters is to assume a current distribution. For an infinite small dipole antenna of 

length λ�l , the current distribution is assumed to be a constant [5]. For a half-wavelength 

dipole antenna orientated towards the z direction, the current distribution is approximately 

written as [5], 

  0ˆ( ') sin[ ( / 2 ' )],0 ' / 2zz a I k l z z l= − ≤I ≤      (1.6) 

where  is the wave number,  is the length of the dipole antenna and equal tok l / 2λ , 0I  is the 

maximum value of the current in z direction, and  represents the location of source current. 'z

  With the introduction of vector potential A  by letting ∇×B = A and applying the Lorentz  

gauge, equations (1.1) and (1.2) can be decoupled as,  

                              2 2k -μ∇ A+ A = J                   (1.7) 

  The solution of the inhomogeneous vector Helmholtz equation in a homogeneous medium 

can be derived by introducing a dyadic Green’s function,  
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2 2 (k - δ∇ G+ G = Ι r r')−         (1.8) 

)
-jk -e,

4π -
=

r r'

G(r r' I
r r'

        (1.9) 

  The unit dyadic is written as x x y y z+ + zI a a a a a a= , where xa ,  and  are unit vectors, 

 represents the position vector starting from the coordinate origin to the observation point, 

 is the position vector from the coordinate origin to the source point. The solution of 

equation (1.7) can then be expressed using Green’s function as (1.10), which is a universal 

formula to find the vector potential.  

ya za

r

r'

 ) ( ) '
V

( )= dvμ∫∫∫ iA r G(r,r' J r'                               (1.10) 

  The electric field and magnetic field can be derived from the vector potential. For the case 

of a multilayer structure, by matching the boundary condition and source excitation, the 

dyadic Green’s function should be modified. By applying the method of moments (MOM), 

the 3D current distribution can be finally solved [5].   

  A simple and explicit expression helps us gain some insight to certain problems. For an 

ideal dipole antenna, infinitesimally thin, line current density can be approximated as (1.6), 

which has a line current flowing in one direction. The vector potential is expressed as, 

( ) ( ', ', ') '
-jk -

e
c

μ ex y z dl
4π -

= ∫
r r'

A r I
r r'

    (1.11) 

  

 In the far field region, the integration can be done analytically for a half-wave dipole 

antenna with assumed sinusoidal current distribution. The components of a spherical wave 

can be clearly derived as,   
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0
cos( cos )

2
2 sin

jkrI eE j
rθ

π θ
η

π θ

−

=      (1.12) 

0
cos( cos )

2
2 sin

jkrI eH j
rφ

π θ

π θ

−

=      (1.13) 

where θ  is the angle between the antenna orientation z and space vector  and r η is the wave 

impedance.  

  The time-average radiation power density and the average power radiated by an antenna are 

written as,  

*1( , , ) Re( )
2rad x y z = ×W E H

z d

     (1.14) 

( , , )rad av
s

P x y= ∫∫ iwW s      (1.15) 

  Therefore, the input resistance, the radiation intensity U, beam width and directivity D can 

be derived analytically for this dipole antenna.  

  However, the hand calculation is seldom useful for an accurate estimation and can’t predict 

the input reactance of the ideal dipole antenna. Even for the ideal infinitesimally thin dipole, 

a numerical analysis is necessary in order to find the reactance. For a simple one dimension 

case, the following Hallen’s integral equation can be derived for a numerical analysis [5],  

'

1 1( ') ' [ cos( ) sin( )]
4 '

jk

e
c

eI z dz j B kz C kε
π μ

− −

= − +
−∫
r r

r r
z    (1.16) 

  The coefficients 1B  and can be found by applying the boundary conditions and source 

excitation.  

1C
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  A common numerical method to solve the integration equation and find the current 

distribution is the method of moments (MOM) [7]. First, the current can be approximated by 

a linear combination of N basis functions, which can be a local basis or a global basis. By 

choosing a weighting basis and then an operation of the inner product, the integration 

equation is decomposed into a series of linear equations. The coefficients of the current basis 

can be found by solving the linear equations. One major difficulty of the MOM is that it is 

difficult to find the Green’s function for a complex structure. However the merit for this 

method is that the boundary condition is included in the Green’s function; therefore it is more 

CPU time and memory efficient.  

  Since differential equations can be approximated by finite difference equations, other 

numerical methods to solve the differential equations such as finite difference time domain 

(FDTD) or finite element methods (FEM) are popular for a complex 3D structure [8]. These 

methods first divide the whole region into numerous small elements, for example, tetrahedral 

elements for 3D space, triangle elements for 2D space. For FDTD, Maxwell’s equations are 

solved directly by satisfying the boundary and excitation conditions. For FEM, the functional 

is found by constructing a variational principle for the differential equation. Then in each 

element, the governing functional is derived. After all of the elements are assembled, a group 

of new equations for each element can be derived by minimizing the functional. Then the 

field values at each point or edge can be solved.  

  Some technical areas such as power engineering and digital and analog integrated circuits 

have relatively simple circuit models to start with. However these simple models assist 

people in analyzing and building very complicated systems such as a digital computer or a 

wireless communication system. For the antenna problem, finding the fields based on the 
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excitation and boundary conditions is not an easy task even for a single structure. For a real 

dipole antenna, the diameter of the dipole is not infinitesimally small. The current 

distribution is not uniform in all directions any more. Thus a hand calculation is not possible 

due to difficulty in accurately finding the current distribution. Due to the complexity, a 

simple model is not easily found to predict the performance of an antenna. Therefore, a full 

wave numerical electromagnetic simulation based on Maxwell’s equations has to be taken in 

order to find a possible solution. For a more complicated problem involving irregular 

geometry, the simulation becomes incredibly complicated and usually can not be handled by 

a personal computer.  

  In our work, a Method of Moments (MoM) based commercial software Momentum [9] and 

Finite Element Method (FEM) based 3D electromagnetic simulation tool Ansoft HFSS V10 

[10] were applied to analyze the antenna problem. Whenever possible, some quasistatic 

approximation analyses were performed to give some physical insight.  

 

1.3 Summary 

   In this chapter, the history of RFID, various types of RFID and main challenges for the 

RFID industry are stated. The motivation of this work is given based on the real challenge to 

develop a metal-surface mounted RFID transponder. Some major numerical and analytical 

techniques to study antennas are discussed.  
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CHAPTER 2 RFID READING RANGE 

 

2.1 Introduction 

  When a RFID transponder with a dipole antenna is attached to a metal surface, it can not be 

read or written. To be able to solve the problem, we have to understand all of the factors that 

affect the reading/writing range.  

  As we’ll see, the wireless communication between the RFID reader and transponder is 

different from the popular cellular communication. In this chapter, in order to gain a better 

understanding of the distinct property of RFID, a brief introduction to the wireless 

communication and cellular transceiver is given.  The basic principle and structure of a 

transponder integrated circuit are explained. The internal structure and function of a state-of-

the-art RFID reader are illustrated. The difference between a RFID reader and other wireless 

transceivers is analyzed.  The radar range equation and Friis transmission equation are 

reexamined to facilitate a better understanding of the factors used to determine the reading 

range. A few available modulation methods for the RFID are discussed. The effects of 

different modulation schemes on the signal to noise ratio (SNR) and bit error rate (BER) are 

analyzed.  A calculation of link-budget is conducted and the limiting factors to determine the 

RFID reading/writing range are discussed.  

 

2.2 Basic principle of wireless communications 

  The people in electrical engineering (EE) deal with two major problems: generating or 

transmitting electrical energy and processing or communicating information [11]. A 
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communication system is designed to transmit and receive information in the presence of 

noise.  
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Fig. 2.1 A general communication system [11] 

 

  As shown in Fig. 2.1, the information source/sink has spectrum concentrated near zero 

frequency generally called baseband signals. The signal processing block can be simply an 

analog low pass filter which is applied to narrow the bandwidth in an analog system. It can 

include an analog-to-digital converter (ADC) to transform the analog waveform into a digital 

signal, digital circuits to do the function of compression, coding/interleaving and a pulse 

shaping circuit to provide a tight spectrum and inter-symbol interference (ISI) free operation.  

( )m t

  The processed baseband signal is converted into a proper frequency band by the carrier 

circuit. Based on the properties of the channel, a communication system is divided into two 

types: wired communication and wireless communication. For wireless communication, the 

channel might be air, free space, or seawater. In order to have the signal effectively 

transmitted through the medium over a certain distance, a device called a transmitting 

antenna has to be used to radiate the power from the transmission line medium to free space. 

In order to capture the transmitted power/signal, another antenna has to be placed at the front 

end of the receiver to transform the electromagnetic wave into conduction current in the 
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transmission line.  Since the antenna can only radiate signal power effectively when the 

antenna has a dimension near an integer numbers of quarter-wavelengths [5], in order to 

decrease the size of the antenna, the baseband frequency spectrum is usually modulated to a 

higher frequency. Another reason to up convert to a higher frequency is the larger available 

bandwidth [12].  A wired channel includes various transmission lines and waveguides. For a 

wired channel, the signal frequency can also be modulated to a higher frequency. For 

example, in optical communication, the signal frequency is modulated onto light frequencies 

to enable the signal to be transmitted in the optical fiber which are even higher than the 

frequencies used for general wireless communication.   

Baseband
Signal

Digital
Signal

Processing
ADC

Pulse
Shaping

Modulator

Carrier

PA

Antenna

 

Fig. 2.2 A general wireless transmitter [13] 

 

  As shown in Fig. 2.2, after the baseband signal is processed and then modulated onto a 

higher carrier frequency, the modulated signal is amplified by a power amplifier to provide 

power to be radiated by the antenna and make long distance communication possible.  

  In the receiver side, the received signal with additional channel noise and interference is 

captured by the receiving antenna. In order to extract the very low-power signal in the 

presence of noise and large interference, the receiver has to be carefully planned and 

designed.  
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Fig.2. 3 A general wireless receiver [14] 

 

  As shown in Fig. 2.3, a low noise amplifier (LNA) with enough power gain will dominate 

the noise figure performance of the receiver front-end. After the signal is amplified by the 

LNA, the high frequency signal is then down-converted by a mixer to a lower frequency, 

which is called the intermediate frequency (IF). After filtering and demodulation, the signal 

is converted to base band frequency. The signal may be converted to digital form by an 

analog to digital converter (ADC). The signals are then processed in the digital world.  

  Depending on the methods of wireless communications, a system may be classified as 

simplex, half-duplex or full-duplex [12]. A simplex system allows communication only in 

one direction. The paging system is an example. A half-duplex system allows two-way 

communication. Since the same channel is used for transmission and reception, the user can 

only transmit or receive information at a given time. The common 2-way radio walkie-talkie 

is an example.  By virtue of frequency division duplex (FDD) or time division duplex (TDD), 

a full-duplex system allows simultaneous radio transmission and reception.  
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2.3 Cellular transceiver 

  A cellular phone has a wireless transceiver and base band processor. GSM (global system  

 

Table 2.1 Major parameters of GSM standards [14] 

Parameters GSM-850 GSM-900 GSM-1800 

(DCS-1800) 

PCS-1900 

Transmit 

Band/uplink 

824-848 MHz 890-915 MHz 1710-1785 MHz 1850-1910 MHz 

Receive 

Band/downlink 

869-894 MHz 935-960 MHz 1805-1880 MHz 1930-1990 MHz 

Channel Spacing 200 KHz 200 KHz 200 KHz 200 KHz 

Methods of 

Multiple Access 

TDMA/FDM TDMA/FDM TDMA/FDM TDMA/FDM 

Duplex FDD FDD FDD FDD 

Modulation 

scheme 

GMSK GMSK GMSK GMSK 

Total users 1000 1000 3000 2400 

Channel bit rate 270.833 kb/s 270.833 kb/s 270.833 kb/s 270.833 kb/s 

  

for mobile communications) as the second digital standard includes GSM-850 (North 

America), GSM-900 (Europe), GSM-1800 (DCS-1800, the United Kingdom) and PCS-1900 

(North America) [14]. The detailed parameters are listed in Table 2.1.    

  For GSM 900, the uplink and downlink are located at 890-915 MHz and 935-960MHz, 

respectively. So a duplexer (two bandpass filters) is usually enough to separate signals in the 
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receiving frequency band from signals in the transmitting frequency band.  The air interface 

is shown in Fig.2.4. 

 

Duplexer

GMSK
Modulator

935-960MHz

890-915MHz

 Digital Baseband Signal
 (270 Kb/s)

LNA

PA

Channel Bandwith is 200KHz

FDD

 

 

Fig. 2.4 GSM 900 air interface [13] 

   

  Gaussian Minimum Shift Keying (GMSK) modulation is obtained by first passing the 

baseband signal through a Gaussian filter with an impulse response 2( ) th t e α−= , which makes 

the shaped pulse possesses the minimum product of period and bandwidth [13]. GMSK is a 

spectrally efficient modulation scheme.  

  Since the RFID uses an ISM frequency band of 902 ~ 928 MHz in the US, the frequency 

band has an overlap with the GSM-900 uplink frequency band. A GSM-900 cellular phone 

can transmit a strong in band interferer to a RFID reader. A RFID reader can send strong in 

band interference signal to a base station. Since the desired signals are usually very weak 

when they arrive at the wireless receiver, the presence of strong in band interferers makes an 

accurate recognizance of useful signals even harder. For a wireless receiver, one of the 

biggest challenges is to pick up the tiny useful signal in the presence of strong interferers.  
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The magnitude and frequency of the blocker signal set the phase noise parameters of a VCO 

or LO.  The phase noise at a certain offset frequency is determined as [14], 

                             (2.1) ker( )(dBc/Hz) (dBm) (dB) (dB) 10log( )signal blocL f P P SNR BΔ ≤ − − −

 

2.4 RFID transponder 

2.4.1 Basic structure and principle of RFID transponder 

   A RFID chip has to maintain an effective communication with the reader. It has three basic  

modes: power-up mode, addressing mode, and reading mode [15]. During the power-up 

mode, the RFID tag antenna captures the RF power from the reader. Then the RF power is 

rectified into DC power for the chip. When the DC voltage increases to a threshold voltage, a 

power on reset circuit turns the transponder into an addressing mode. During the addressing 

mode, the transponder decodes the incoming on-off keying (OOK) or phase shift keying 

(PSK) modulated signals and compares them with the ID stored in the EEPROM. If it detects 

its ID sent by the reader, it changes to the reading mode and starts to modulate at an 

intermediate (IM) frequency. The other transponders change into a quiet mode. By 

backscattering, the modulated electromagnetic wave is detected by the reader. Then the 

reader sends RF interrupts to force the transponder to communicate its next bit of information. 

Depending on its modulation scheme and its next bit stored in the register, the transponder 

will switch “ON” or “OFF” to backscatter the digits to the reader. Therefore the reader 

receives the data sent from the RFID transponder and demodulates it. Then the data from the 

transponder is compared with the ID the reader sends. If they agree with each other, then the 

reader exhibits the ID number on the screen.  
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  The structure of a RFID transponder is shown in Fig. 2.5. The voltage multiplier is used to 

extract the RF power and convert it to a higher DC voltage. The demodulator is used to 

retrieve the data sent from the reader and clock information. In the Gen2 chip, an EEPROM 

is used to store the data information which can be rewritten remotely by the reader.  In order 

to send the data stored in the EEPROM, a clock signal is generated by a ring oscillator and 

the data is retrieved and shifted by the shift register. Then the data sequence modulates the 

modulator to backscatter the signal through the antenna to the reader.  
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Fig. 2.5 A RFID Transponder [15] 

 

2.4.2 DC power supply of a passive RFID  

  The passive RFID chip needs a minimum voltage to turn on the circuit. A major task is to 

extract the highest voltage possible from the tiny RF input power. Therefore a rectifier and a 

voltage multiplier are required at the front end of the chip.  



www.manaraa.com

21 
 

VDD

VSS

C C C
RF input from antenna

C

C

C

Diode

 

Fig. 2.6 A rectifier and voltage multiplier [15] 

 

  As shown in Fig. 2.6,  is equal to outV 0( RF Dn V V )× − ,  is the total number of diodes, n 0DV  is 

the forward on voltage of a schottky-barrier diode (SBD), which is formed by contacting 

metal onto an n-type semiconductor material. Due to the absence of a p-type semiconductor, 

the potential drop through the junction is approximately one half of a normal P-N junction 

diode. Under the conjugate matching condition, the maximum possible input power to the 

load is . Then the source voltage (in RMS) is equal toavP 2s av aV P= R , which shows a larger 

antenna  read impedance should increase the voltage to the RFID chip. 

  In a later section, it’ll be demonstrated that the low overall rectifying efficiency (10%~20%) 

[15] becomes one major limiting factor to the passive RFID reading/writing range.  
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2.4.3 Modulation 

  The backscattered wave is a modulated signal which is used to distinguish the digits ‘0” and 

“1”. Two major modulation schemes are used: amplitude shift keying (ASK, OOK) or phase 

shift keying (PSK). For an amplitude shift keying (ASK or OOK) modulation, during the on 

and off two states, the reflection coefficient changes its amplitude depending on the state “0” 

or “1”.  Therefore the amplitudes of the scattered power scatterP  are different in each state. The 

input power for the rectifier is also different in each state.  Therefore a trade off has to be 

made to maintain enough DC power supply and optimum backscattered power. The 

advantage of ASK is its simple implementation and achieving the maximum magnitude of 

the output DC voltage. 

  For a phase shift keying (PSK) modulation, the phase of the reflection coefficient changes  

with the modulated signal. Since the magnitude of LΓ  doesn’t change with the modulation,  

 

 

Fig. 2.7 Schematic of a PSK circuit [15] 
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the input power to the rectifier doesn’t vary. It’ll be shown in the next section that the bit 

error rate (BER) of the PSK is superior to the ASK. The disadvantage for PSK is its 

relatively complicated circuit structure. Fig. 2.7 shows a possible circuit to do the phase 

modulation. The varactor diode is built using a PMOS with drain and source shorted to each 

other. The varactor capacitance is changed by changing the DC voltage across it. The DC 

voltage is controlled by the input logic signal. A proper design would allow only the phase   

change for the reflection coefficient. However for a real circuit, due to the parasitic 

parameters, a pure ASK or PSK won’t exist, instead, a hybrid mode exists which raises the 

complexity of the analysis. 

 

2.4.4 Signal to noise ratio and bit error rate of ASK and PSK 

  If the RFID transponder uses ASK or PSK modulation, the modulated signal is equal to the 

product of the carrier and the base band signal. For digital communication, the base band 

signal is a square wave rather than a sine wave as in analog communication. If we assume the 

carrier signal is a sine wave, then the backscattered signal is a switched sine wave. The 

following analysis shows the spectrum of the switched sine wave.   

  Assuming a rectangular pulse has the following function, 

1, ,( ) 2 2
0,

b b

b

T TtX t
otherwise

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎪
⎨ ⎢ ⎥⎣ ⎦
⎪
⎪⎩

∈ −
=      (2.2) 

  The Fourier transform of ( )bX t is  

sin( ) sin( )2 2( ) ( ) 2 sin ( )2
2

b b
j t b

b b b b
b

T T
TX j X t e dt T T cT

ω
ω ω
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−

−∞

= = = =∫       (2.3) 
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  If the RFID uses ASK, the backscattered signal ( )mX t is equal to the product of a 

rectangular pulse ( )bX t  and carrier ( )cX t in the time domain,  

( ) ( ) ( )m c bX t X t X t=                          (2.4) 

  A sinusoidal carrier signal ( ) cos( )c cX t A tω=  with zero initial phase has a Fourier transform, 

( ) ( ) ( )c cX j A cω π δ ω ω δ ω ω⎡ ⎤⎣ ⎦= − + +     (2.5) 

  In the frequency domain, the spectrum of the signal product is derived based on the 

convolution properties of a Fourier transform, 

1( ) ( )* ( ) ( ) ( ( ))2

( )1 ( ) ( ) sin ( )2 2

( ) ( )sin ( ) sin ( )2 2 2

m c cb b

b
c c b

c cb b b

X j X j X j X j X j d

TA T c

AT T Tc c

d

ω ω ω θ ω θ
π

ω θπ δ θ ω δ θ ω θ
π

ω ω ω ω

θ
∞

−∞
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−∞

⎡ ⎤⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= =

−
= − + +

− +
= +

∫

∫

−

        (2.6) 

  Therefore the backscattered spectrum can be expressed as a sinc function, which is 

continuous and centered at the carrier frequency.   

  For coherent detection, with a matched-filter reception, with the existence of Gaussian  

channel noise, it can be shown that the ASK and FSK has a probability of bit error [11], 

0
( )b

e
EP Q N=             (2.7) 

where  is the signal power and is the noise power. bE 0N

  For PSK, a probability of bit error is given as,  

0

2( b
e

EP Q N= )                                   (2.8) 
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where                               
2

( )21( ) e
2

u

x
Q x du

π
∞ −

= ∫               (2.9) 

 

 

ASK or FSK PSK

10 log
Eb
N0

 dB

K1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BER

 10- 6

 10- 4

 10- 3

 10- 2

 10- 1

 100

 

Fig. 2.8 Comparison of the probability of bit error for a coherent ASK/FSK and PSK 

 

  As shown in Fig. 2.8, for the same bit error rate (BER), PSK has a 3 dB SNR advantage 

over ASK/FSK. However, ASK is much easier to be implemented in a RFID transponder. 

For a BER of 1E-4, the SNR for the ASK is about 11.5 dB. This sets the minimum SNR 

requirement for the receiver.  
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2.5 RFID reader 

  The RFID communication is different from cellular communication since the RFID uses the 

backscattering communication technique [1]. A RFID reader sends the signal and power 

through an antenna to a RFID transponder. After the RFID transponder is powered up, it is 

going to modulate the radar cross section of the RFID transponder antenna so that the 

backscattered electromagnetic energy has different magnitude (ASK) or phase (PSK). It can 

be seen that for a RFID reader, the received signal and transmitted signal have the same 

carrier frequency. This is the major difference from the cellular phone or other wireless 

applications. For other wireless transceivers, transmitting and receiving either use different 

frequencies (frequency division duplex or FDD) or operate at different time slots (time 

division duplex or TDD). Therefore, there is a good isolation between transmitting signals 

and receiving signals. 

  RFID includes a near field reader and far field reader. A far field reader can be divided into 

a handheld reader and a port station. The handheld reader we used has an isotropic radiated 

power (EIRP) of 4W. The equivalent radiated power (ERP)  equals to the  

divided by the gain of the antenna. For a half-wavelength dipole antenna with gain 1.643, 

 equals to 2.435W.  

EIRPP ERPP EIRPP

ERPP

  A RFID reader is a transceiver working in the RF frequency range. In order to generate 

33.87 dBm (2.435W) input power for the reader antenna, it needs a RF oscillator and power 

amplifier modules. It requires a circuit unit to do the digital modulation and demodulation. A 

mixer is used to lower the received RF frequency to an intermediate frequency (IF). A 

circulator is used to separate the input and output RF signal connecting to the antenna. Fig. 
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2.9 shows a simplified diagram of a RFID reader [16] which uses one antenna for 

transmitting and receiving RF signals.  

 

 

Fig. 2.9 A RFID reader [16] 

 

  A RFID reader includes two major types: stationary reader and mobile reader. A stationary 

reader has a different TX antenna and RX antenna. It receives electromagnetic waves 

backscattered from a RFID transponder via the RX antenna. The TX antenna and RX antenna 

can be placed at different locations. The physical distance usually guarantees a good isolation 

between the TX antenna and the RX antenna. A mobile or hand-held-type reader shares one 

antenna for both the TX and the RX path because of limited space. Unfortunately, since the 

passive RFID communication is using a back-scattered response, which means a reader 

transmits and receives signals at the same time and at the same carrier frequency, TDD or 
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FDD is not applicable to RFID communication. Therefore a directional coupler or a 

circulator instead of a duplexer or switch has to be used in a hand-held-type reader. However, 

either the directional coupler or circulator can’t completely separate transmission from 

reception. Some of the TX power will leak into the receiver. 

 

 

Fig. 2.10 A RFID communication system [17] 

 

  Fig. 2.10 shows a RFID communication system [17]. The internal circuit block of the RFID 

reader is shown in Fig. 2.11. I-channel and Q-channel baseband signals are first processed by 

a digital to analog converter (DAC), then processed by a pulse shaping filter (PSF). After that, 

the I/Q signals are modulated by an I-Q modulator and converted to the carrier frequency 

(902MHz ~ 928 MHz). The signal is amplified by a power amplifier and transmitted through 

the circulator and antenna. The transmitted energy is captured by the transponder antenna and 

then rectified to a DC voltage. Once the transponder is powered up, it demodulates the 

captured data sequence. It then sends the stored digital data to the reader by modulating the 

antenna radar cross section.  The backscattered signals are accepted by the RFID reader 
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antenna and amplified by a LNA. I-Q mixers will convert the input signals to baseband 

frequency. Then the signals are amplified and selected by a channel select filter (CSF). A 

variable gain amplifier (VGA) is essential to keep a large dynamic range for the receiver. 

After the I/Q demodulator, the digital data from the RFID transponder are acquired. ADCs 

are applied when further digital processing is necessary. The I-Q LO signals are generated by 

a dual loop phase-locked loop (DLPLL). A PLL tracks the phase or frequency of the input 

signals.  

 

 

Fig. 2.11 A RFID reader integrated circuit architecture [17] 
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  The Symbol MC9000-G RFID reader [18] supports EPC Gen 1 (Class 0 & Class 1) and Gen 

2 standards. It works for a frequency range from 902MHz~ 928 MHz. The output power is 1 

W (4W EIRP) with an antenna gain of 4 (6 dBi antenna gain).  This was the handheld RFID 

reader we used for this work.  

 

2.6 Radar cross section (RCS) and backscattering radiation 

     Since the RFID transponder uses backscattering to send the data to the reader, the radar 

cross section of the receiving antenna at different loads is a figure of merit in determining the 

communication quality.  

sZ

LZ

sV b a

LΓ

+

-

V

I

 

Fig. 2.12 Equivalent circuit for the RFID transponder antenna 

  A simplified analysis based on the antenna equivalent circuit in Fig. 2.12 is followed. V and 

I are the maximum values. Antenna input impedance sZ equals to s sR jX+ . The antenna load 

impedance LZ equals to L LR jX+ .  sR  is the sum of the antenna equivalent loss resistance 

cR and radiation resistance rR .  

  The power waves and b are defined as [19], a
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2
s

s

V Z Ia
R

+
=        (2.10)  

*

2
s

s

V Z Ib
R

−
=       (2.11)  

where *
sZ  is the conjugate impedance of sZ . 

The voltage V and current I can be solved from (2.10) and (2.11), 

*
s s

s

Z a Z bV
R
+

=                 (2.12)  

1 ( )
s

I a b
R

= −           (2.13)  

 Then the load reflection coefficient can be derived as, 

* *
s L s

L
s L s

V Z I Z Zb
a V Z I Z Z

− −
Γ = = =

+ +
      (2.14)  

  The power consumed by the load is equal to available input power minus reflected power, 

which is derived as, 

 
2 2

2 2 2 2
22 2

1 1 ( ) ( ) 2(1 ) [1 ]
2 2 ( ) ( )

L s L s L
L L

L s L s

s

L s

R R X X R RP a a a
R R X X Z Z

− + +
= − Γ = − =

+ + + +
   (2.15)  

   The scattered power by the antenna is derived as,  

2
2 2 2

2
1 1 1 2( ) 1
2 2 2

r
scatter r r L

ss L s

2 r sR R RP I R a b R a a
RR Z Z

= = − = − Γ =
+

          (2.16)    

  The power consumption due to the loss resistance is derived as, 

2
2 2 2

2
1 1 1 2( ) 1
2 2 2

c
loss c c L

ss L s

2 c sR R RP I R a b R a a
RR Z Z

= = − = − Γ =
+

           (2.17)    
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   The antenna radiation efficiency is defined as [5], 

r
cd

r c

r

s

R R
R R R

ε = =
+

                       (2.18)  

  Under conjugate matching condition, scatter loss LP P P+ = , in order to capture 50% power for 

the RFID chip, 50% power has to be reradiated or consumed by the antenna itself. So the 

scattered power can be expressed as, 

scatter cd LP Pε=        (2.19)  

  Under the conjugate matching condition, the available power can be easily derived as,   

2 2
2 2

21 1 1
2 2 2 8 42 2

s s s s s
av em i r i

ss s

V Z I V Z I Z I VP a A W G
RR R

λ
π

+ − +
= = = = = = W   (2.20)     

  Then 2a can be derived as,  

2 2 em ia A= W          (2.21) 

   is the maximum effective area,  is the input power density, is the gain of the 

receiving antenna. Combining (2.16) and (2.21), the scattered power is written as the product 

of the radar cross section and input power density,  

emA iW rG

2
4 s r

scattered i em i
L s

R RP W A W
Z Z

σ= =
+

             (2.22)  

  The radar cross section of the antenna can be then expressed as a function of the antenna 

gain, antenna impedance, load impedance and wavelength,  

2 2 2 2

2 2
4 4

4 4
λ λ ε λσ
π π π

= = =
+ +

r s r r s cd r cd s

s L s L s L

G R R G R D R2 2

2
ε
+Z Z Z Z Z Z

    (2.23)  
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  The radar cross section at the conjugate matching condition has a maximum value, which is 

equal to the maximum effective area with 100% efficiency. Under any other conditions, since 

s s sZ R jX= +  is a complex number, and s sR X�  for RFID transponders, even with a 

shorted load, the radar cross section would be much less than .  emA

  Since the transmitter and receiver are at the same location, the radar cross section is called a 

monostatic or backscattering RCS, otherwise, it is called a bistatic RCS.  

   If the reflection coefficient and input power at the interface between the RFID reader 

antenna and RFID reader generator are expressed as tΓ  and , respectively, with an antenna 

gain , the radiated power density at a distance R to the RFID reader is,  

inP

tG

2
2 (1 )

4
in t

t t
P GW

Rπ
= − Γ             (2.24)  

  After the power is captured by the RFID transponder antenna, it’ll be backscattered to the 

RFID reader. Therefore the scattered power density can be written as,  

     24
t

s
WW
R

σ
π

=                        (2.25) 

  The amount of power delivered to the RFID reader is,  

l l l l

l l l l

2 22 22 2
2

2 2 22 22 2 2 2
2 2 3 4

(1 ) (1 )
4 4 4

(1 ) (1 ) (1 )
4 4 4 (4 )

t t t
s r s rr r s t s t

t in t in t
s r st t t

G G WP A W W
R

G P G P G
R R R

λ λ σρ ρ ρ ρ
π π π

λ λσ
rρ ρ σ ρ ρ

π π π π

= = − Γ = − Γ

= − Γ − Γ = − Γ

i i

i i
 (2.26)  

  The term l l 2

s rρ ρi accounts for the polarization loss between the scattered waves and 

receiving antennas.   Based on the above formulation, in order to more accurately describe 
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the RCS of an antenna, a more strict procedure should be followed. The scattered electrical 

field can be written as [5],  

( ) ( )s s m
L A A t

t

IZ Z
I

= −ΓE E E              (2.27) 

where ( )s
AZE ,  and AΓ mI are the scattered electric field, reflection coefficient and scattering 

current when the load impedance is AZ  and tI  and tE  are the antenna current and electric 

field radiated by the antenna in the transmitting mode, respectively.   

  Since the electromagnetic waves radiated by an antenna in the far field region ( 22 /r D λ> ) 

are approximately a plane wave, and the S parameters are derived based on the assumption of 

plane wave, the S matrix shown in Fig. 2.13 can be applied to describe the behavior of the 

reader-transponder antenna link.  

 

Tw o Po rt [S ]
sZ LZ

sV

inΓ LΓ

1a

1b

2a

2b

 

 

Fig. 2.13 Equivalent scattering matrix description for the link of the RFID reader and transponder 

  The scattering matrix of the two ports is written as [20], 
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          1 11 1 12b S a S a2= +

2 21 1 22b S a S a

             (2.28)  

2= +           (2.29)  

  The load reflection coefficient LΓ is expressed as, 

2

2
L

a
b

Γ =               (2.30)  

  From (2.28) and (2.30), the reflection coefficient inΓ  at the input port can be derived as,  

1 11 1 12 2 2
11 12 11 12

1 1 1

L
in

b S a S a a bS S S S
a a a

+
Γ = = = + = + 2

1a
Γ         (2.31)   

  Combining (2.29) and (2.30), 2 21 1 22 2 21 1 22 2Lb S a S a S a S b= + = + Γ , therefore,  

21 1
2

221 L

S ab
S

=
− Γ

                         (2.32) 

  From (2.31) and (2.32), the input reflection coefficient is clearly related to the load 

reflection coefficient by the following equation [20], 

12 21
11

221
L

in
L

S SS
S
Γ

Γ = +
− Γ

              (2.33)    

   Since  can be measured with a network analyzer, if , ,  are treated as three 

complex variables, by varying the load impedance or equivalently  to three known 

complex numbers, in principle, by three measurements, the scattering parameters can be 

determined.  

inΓ 11S 12 21S S 22S

ΓL

   During the period of reader-transponder downlink communication, the received power 

scattered by the RFID antenna can be written as,  _r scatteredP

 2 2
_ (r scattered in in tP P= Γ − Γ )      (2.34) 
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  derived by (2.34) should be the same as the received power derived by the Radar 

Range Equation (2.26). So the RCS can be derived as,  

_r scatteredP

l l

3 4
2 2

22 2 2 2

(4 ) 1( )
(1 )

in t
t t s r

R
G

πσ
λ ρ ρ

= Γ − Γ
− Γ i

        (2.35) 

  With a conjugate matching at the input port between transmitting antenna and generator and 

with zero polarization loss, the above formula for a RCS of the RFID transponder can be 

simplified as,  

3 4
2

2 2

(4 )
in

t

R
G

πσ
λ

= Γ        (2.36) 

  Therefore the RCS can be measured more accurately.  With a matched load, . Only 

a one port S parameter is needed to measure the RCS with a matched load. The approach by 

using a full two-port S matrix is theoretically stricter for any load impedance.  

11in SΓ ≈

  From (2.26), the maximum distance for a receiver which is able to pick up a signal with a 

signal level  with an acceptable signal to noise ratio (SNR) or bit error rate (BER) at a 

given input power  is, 

rP

inP

l l l l
2 2 2 22 22 22 24 4

3 3 2(1 ) (1 )
(4 ) (4 )

in t in t
s r s rt t

r r

P G P c GR
P P f
λσ ρ ρ σ ρ ρ
π π

= − Γ = − Γi i           (2.37) 

where c  is the speed of light in free space and f is the fundamental signal frequency. 

 

2.7 The factors to determine the reading/writing range 

  As we mentioned before, for a backscattering communication system, the transmission 

signals and receive signals have the same carrier frequency and the transmitting and 
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receiving process happens almost simultaneously due to the short distance, therefore 

frequency division duplex (FDD) or time division duplex (TDD) can’t be applied to the 

transceiver front-end. This is one distinct difference from the other wireless communication 

like mobile phone service or GPS (Global Positioning System).  

 

2.7.1 Directional coupler (circulator) 

  To separate the transmitting signals and receiving signals, some other methods like a 

directional coupler should be applied.  The common circulator is a passive microwave device 

which usually has three ports. It can be built with a stripline connector, ferrite disk and bias 

magnet [21]. The scattering matrix description for a three port device is given as, 

11 12 13

21 22 23

31 32 33

[ ]
S S S

S S S S
S S S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=             (2.38) 

  If all of the ports are matched, then ,  and should be each equal to zero. If the 3-

port network is lossless, than based on energy conservation, the S matrix should be unitary, 

which means the following condition should be met [21],  

11S 22S 33S

[ ] [ ] [ ]TS S I∗ =  or              (2.39) 
1

, , 1...
N

ijki kj
k

S S i j Nδ∗

=
= =∑

  It can be easily shown that for the matched reciprocal matrix, it can’t be unitary, which 

means that a three-port lossless reciprocal network that is matched at all ports doesn’t exist.    

Since the properties of matching and loss are more important for maximum power transfer, a 

practical ferrite circulator is built with those properties but it is nonreciprocal. The S matrix 

of an ideal circulator is expressed as [21],  
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0 0 1
[ ] 1 0 0

0 1 0
S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=                (2.40) 

 From the matrix description, the RF power is able to transfer from port 1 to port 2, port 2 to 

port 3 and port 3 to port 1.  Due to the symmetry, any port can be defined as port 1. Once 

port 1 is chosen, based on the structure of the circulator, port 2 and 3 are fixed. If port 1 is 

chosen as the transmitting port, port 2 and 3 should be the antenna port and receiving port, 

respectively.  The ferrite circulator usually has a minimum 20 dB isolation from the input 

port to the isolated port. We’ll show that the finite isolation of the circulator exerts a high 

linearity requirement for the receiver.  

 

2.7.2 Noise figure, sensitivity, IIP3 and dynamic range 

  Noise figure is defined as the input signal-to-noise ratio (SNR) to the output signal-to-noise 

ratio. For a cascaded system, the overall noise figure is expressed as [20], 

32
1

1 1 2

111 1 ...total
a a a

NFNFNF NF
G G G

−−= + − + + +     (2.41) 

where 1NF , 2NF  and 3NF   are the numeric noise figures of stage 1, 2 and 3, respectively.  

and are the numeric available power gains for stage 1 and 2, respectively.  NF  

represents the overall numeric noise figure of the receiver. 

1aG

total2aG

  For a receiver, the first amplification stage usually dominates the overall noise performance.  

Therefore a LNA with a low noise figure but enough power gain is placed as the first 

amplifier to amplify the received signal without introducing much additional noise.  

  The sensitivity of a RF receiver determines the lower bound of the magnitude of the  
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received signal, which is defined as the minimum input signal level for a given SNR or BER.  

Mathematically, it is expressed as [13],  

,min min174dBm/Hz 10loginP NF B SNR= − + + +     (2.42) 

where  is the minimum allowed input signal power, ,mininP 174dBm/Hz−  accounts for the 

available thermal noise power in a unit bandwidth, NF is the overall noise figure of the 

receiver, B is the bandwidth in Hertz and is the minimum SNR requirement for a 

given BER. 

minSNR

   For a given nonlinear system, when two input signals with different frequencies are fed to 

the system, the system will generate frequencies which are different from the harmonics of 

the two input frequencies, the phenomenon is called intermodulation (IM). In dBm units, for 

a two-tone test, the input third interception point (IIP3) is expressed as [13], 

, 1 , 1 , 3
13 dBm ( )
2in out out IMIIP P P Pω ω= + −     (2.43) 

where 3 dBmIIP  represents the IIP3 in a unit of dBm, , 1inP ω  is the input signal power at 

frequency 1ω , , 1outP ω  is the output signal power at 1ω , and is the output IM3 power, all 

in units of dBm.  

,out IMP 3

  In cascaded stages, the overall IIP3 is express as [13],  

2 2 2
1 1 2

2 2 2 2
3, 3,1 3,2 3,3

1 1 ...v v v

IP t IP IP IP

A A A
A A A A

≈ + + +         (2.44) 

where ,  and  are the IIP3’s of the first stage, second stage and third stage, 

respectively. 

3,1IPA 3,2IPA

1v

3,3IPA

A and 2vA  are the voltage gains of the first stage and second stage, respectively. 

3,IPA t represents the overall IIP3 of the cascaded system.  
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  The upper bound of the received signal level is determined by the nonlinearity of the system, 

which is defined as the maximum input signal level in a two-tone test for which the input 

IM3 is equal to the noise floor [13], 

3
,max

2 , 174dBm/Hz 10log3
IIP

in
P FP F NF+

= = − + + B    (2.45) 

  The spurious free dynamic range (SFDR) is the difference between the maximum allowed 

input-signal and minimum detectable input-signal [13], 

3 3
min min

2 2(( )
3 3

IIP IIPP F P FSFDR F SNR SNR+ −
= − + = −

)    (2.46) 

   A receiver should have a low NF in order to keep the sensitivity of the system at the 

desired low level. The linearity, such as IIP3, should be good so that the receiver is able to 

recognize useful signals even in the presence of the strong in-band interference.  

 

 2.7.3 1-dB compression point and IIP3 of a RFID reader 

  Assuming the receiver has an input-output relationship ( ) ( ( ))y t f x t= , a Taylor’s series 

expansion gives, 

"
' 20

0 0 0 0
( )( ) ( ( )) ( ) ( )( ) ( ) ...
2!

f xy t f x t f x f x x x x x= = + − + − +       (2.47) 

  As a weakly nonlinear system, the higher order term is smaller. Therefore the receiver 

input-output relationship can be approximately described as the following polynomials,  

2 3
0 1 2 3( ) ( ) ( ) ( )y t x t x t x tα α α α= + + +          (2.48) 

  The strong interferer from the transmitter at the carrier frequency can be expressed as,   

   ( ) cos(I I )cX t A tω=        (2.49)  
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  When the RFID transponder modulates the scattered wave at a frequency bω , the 

backscattered signal in time domain can be approximately written as,  

  ( ) cos( ) cos( )s s c cb bX t A t tω ω ω ω⎡ ⎤⎣ ⎦= + +−              (2.50) 

  The total input signals to the receiver is the sum of the interferer and backscattered signal,  

   ( ) ( ) ( )I sx t X t X t= + ,       (2.51) 

  The higher order polynomials will cause inter-modulation terms which are equal to the 

useful frequencies c bω ω− and c bω ω+ . The term at c bω ω±  including the IM term can be 

easily derived as [13],  

   3
1 3 3

9 9:
4 4

2
s s Ic b sA A Aα α αω ω + +± A     (2.52) 

   For a relatively small input due to backscattering, the 3
3

9
4 sAα term can be neglected. When 

the c bω ω±  terms are equal to zero, the useful base band information will be lost after down 

conversation. When 2
1 3

9 0
4s I sA A Aα α+ = IA,  is,  

1

3

2
3IA α

α
=            (2.53) 

  It is common that 3 0α <  for a stable receiver system.  

  The input third interception point can be derived as [13], 

1
3

3

4
3IIPA α
α

=            (2.54) 

  Therefore,    

3 3IIP IA A=                         (2.55) 
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  Expressed in dBm,  

3 dBm ( 4.77) dBmIIP IA A= +              (2.56) 

  The 1-dB compression point is derived as [13],  

1
1

3

0.145dBA α
α

≈                   (2.57) 

  which gives 

3 1dBm ( 9.63) dBmIIP dBA A= +        (2.58) 

1 dBm ( 4.86) dBmdB IA A= −          (2.59) 

  For an handheld RFID reader with 4 W EIRP and 1W output power (6dBi antenna gain), 

with a 25 dB port isolation from the circulator, the interferer power from the transmitter is, 

36 6 25 5(dBm)I aA EIRP G Isolation= − − = − − =    (2.60) 

  This means a 9.77 dBm IIP3 and 0.14 dBm 1 dB compression point for the receiver.  It can 

be seen that the receiver has to be highly linear if the transceiver shares one single antenna. 

For two separated antennas like a stationary RFID reader, the port isolation for the two 

antennas can be as high as 40 dBm. A -10 dBm IIP3 is then required for the overall system, 

which relaxes the linearity requirement.  Generally, for the same receiver architecture, a 

tradeoff between noise figure and IIP3 exists. A relaxed IIP3 requirement can contribute a 

better noise figure performance and thus increase the overall reading range.   

 

2.7.4 RFID link-budget and reading range 

  A homodyne receiver based on [17] is redrawn in Fig. 2.14 with a certain simplification.    

The input signal and interferer are accepted by the antenna and then passed through a 
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circulator to a LNA. After they are down converted to the baseband frequency by a LO and 

mixer, they are filtered by a low pass (LP) filter and amplified by a VGA. The SNRout 

represents the minimum SNR at that point to guarantee a certain BER after demodulation.  

 

Antenna

LNA Mixer

LO

LP  F ilter

T ransmitter

C irculato r VG A

Demo d ulato r

outSNR

A B C D E F

 

Fig. 2.14   A homodyne receiver structure 

 

  A level diagram was built to visualize the NF, IIP3 and gain performance of the receiver. 

The parameters for the LNA, mixer, LPF and VGA are typical specifications from the 

datasheet or literature [13].  

  With a mixer with a 10 dBm IIP3, the overall system has only -4.9 dBm IIP3.  For a 

circulator with 25 dB isolation, the required IIP3 is 9.77 dBm. To achieve the IIP3 

requirement, a mixer with 30 dBm IIP3 is required. Therefore, a passive mixer may have to 

be applied instead. Otherwise some other techniques have to be taken to cancel the interferer 

from the transmitter. 

  From Table 2.2, it is also clear that the LNA dominates the noise figure performance when 

the VGA is in high gain mode. The passive components before the LNA will introduce 

additional noise figure equal to their loss in dB. When the VGA is in a low gain mode, the 
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Table 2.2 Level diagram corresponding to the Homodyne receiver 

     Circulator 

A-B 

LNA 

B-C 

Mixer 

C-D 

LPF 

D-E 

VGA 

E-F 

Stage Voltage Gain /dB -0.2 15 10 -5 Low Gain:  7.5 

High Gain: 50 

Stage Power Gain /dB -0.2 15 1 -5  

Cumulative Voltage Gain/dB -0.2 14.8 24.8 19.8 Low Gain:  27.3 

High Gain: 69.8 

Stage NF/dB 0.2 1.4 12 5 Low Gain: 44 

High Gain: 4 

Cumulative NF dB (Low 

Gain) 

33.2 33.0 48.0 49.0 44 

Cumulative NF dB (High 

Gain) 

3.26 3.06 13.3 9.0 4 

Stage IIP3 (dBm) ∞  12 10 ∞  38 

Cumulative IIP3 (dBm) -4.9 -5.1 10.0 43.0 38 

   

 

 noise figure is dominated by the NF of the VGA. The VGA is used to increase the dynamic 

range of the receiver.  The receiver has an overall NF of 3.26 dB. For a far-distance reception, 

the receiver works at the high gain mode, which corresponding to an IIP3 of -4.9 dBm. The 

sensitivity of the receiver is calculated by (2.42), which is -106.1 dBm and corresponding to 

a 1.57 uV signal for a 50 ohm system. For this receiver structure, the maximum received 
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signal is defined by the IIP3 and noise floor, which is given by (2.45). The noise figure of the 

receiver is 33.2 dB for the low gain case, which gives a maximum input signal level -12.51 

dBm. The SFDR is 89.1 dBm. 

   Now we’re ready to determine the limiting factors for the reading distance of the UHF 

RFID transponder.  For a backscattering communication, the maximum communication 

distance R can be found from (2.37), 

l l l l
2 2 2 22 22 22 24 4

3 3 2(1 ) (1 )
(4 ) (4 )

in t in t
s r s rt t

r r

P G P c GR
P P f
λσ ρ ρ σ ρ ρ
π π

= − Γ = − Γi i    (2.61) 

  From (2.23), the RCS is derived as,  

2 22 2

2 2
cd s s cdr r

s L s L

R RG c D
f

2

2Z Z Z
ελσ

π π
= =

+ + Z
ε     (2.62) 

  At the ISM frequency band 902~928 MHz, the center frequency 915MHz is used for the 

calculation. Assuming there is no polarization loss, the nominal impedance of the RFID 

transponder IC at -13 dBm input power is 9.9-j60.5 ohms, the radar cross section of the RFID 

antenna is, 

2 22 8
2

2 22 6

2

2.6 3 10 8 0.58 1( )
915 10 8 85 9.9 60.5

0.00208(m )

s cdr

s L

RD c
f Z Z j j

εσ
π π

σ

× × ×
= = × ×

×+ +

=

+ −     (2.63) 

  With a receiver sensitivity of -106.1 dBm, the maximum reading range without mismatch 

between transmitter antenna and generator and polarization loss is given by (2.61) ,  

l l
2 2 22 24

3 2 (1 ) 92.6(m)
(4 )
in t

s rt
r

P c GR
P f

σ ρ ρ
π

= − Γ =i ,    (2.64) 

which is really large since the normal tested reading range is less than 10 meters.  
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Fig. 2.15 Reading distance vs receiver sensitivity 

 

  As shown in Fig. 2.15, for -90 dBm sensitivity, 36.6 m reading range can be achieved. A -

80 dBm sensitivity corresponds to 20.6 m reading distance. Perfect matching can boost the 

reading range of the -80 dBm sensitivity to 28.4 m. Since ASK can not reflect power at all 

digits, assuming the power is scattered back during the 50% time period, the reading range 

will reduce 16%. The maximum allowed signal level is -12.51 dBm, which corresponds to a 

0.42 m reading distance. 

  Because the passive RFID tag achieves about 10-meter reading range, some other 

limitations have to be found out.   The passive RFID tag has a rectifier at the front end to 
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generate DC voltage. The rectifier usually has very low overall efficiency (15%~20%) [15]. 

It has been reported [15] that a 16.7 uW RF power is possible to power up the passive RFID 

transponder and perform the communication. For a RFID transponder antenna with a 

directivity of 4.15 dBi and radiation efficiency 58%, the reading distance tested by a Symbol 

MC9000-G RFID reader can be calculated by the Friis Transmission Equation [5],  

    15.68(m)
4

t t r

r

PG GR
P

λ
π

= ≈     (2.65) 

  The distance is closer to the practical maximum reading distance for most of the passive 

RFID transponders tested by a handheld RFID reader. Our tested results in Chapter 4 will 

verify that the key limiting factor to the reading range of a passive RFID transponder is the 

low efficiency of the rectifier and multiplier. For an active RFID transponder, the dominant 

limiting factor to the reading range is the sensitivity of the receiver.    
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CHAPTER 3 METAMATERIAL  

AND ITS APPLICATION TO METAL SURFACE MOUNTED RFID 

 

3.1 Introduction 

  When a RFID dipole antenna is placed horizontally above a metal surface, due to the out of 

phase image current immediately below the metal surface, the electromagnetic waves 

radiated by the original and image currents will approximately cancel each other so that the 

total radiated power is approximately zero. Since the antenna is a reciprocal device, for the 

same reason, the antenna is not able to receive the signal or power from a RFID reader.   

  In this chapter, it’ll be shown that metal surface mounted dipole antenna has a very low 

radiation efficiency.  Our analyses in Chapter 2 demonstrate that when the transponder 

antenna has radiation efficiency approximately zero, the reading distance will be zero.  

  Some potential solutions to improve the radiation efficiency of metal surface mounted RFID 

transponder are discussed. The distinct properties of a metamaterial such as a frequency 

selective surface (FSS) [22] and a mushroom-like electromagnetic bandgap (EBG) surface 

[23] are explored. Our study shows that the FSS and mushroom-like EBG exhibit very 

similar reflection phase profiles and bandgap properties. Their application to boost the 

efficiency of the metal-surface mounted RFID dipole antenna is experimentally verified.  

 

3.2 Potential solutions for metal surface mounted RFID transponders 

• Increasing the distance between a UHF RFID transponder antenna and metal 

ground 
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  The similarities between transmission of a plane wave and a transmission-line equation 

allow us to treat the free space as an array of parallel plate waveguides. If the dipole antenna 

has a minimum distance / 4λ  from the PEC ground, as shown in Fig. 3.1 (a), the input 

impedance of the dipole antenna can be found from the equivalent transmission model shown 

in Fig. 3.1 (b). The input impedance at the antenna position is derived by the following 

equation [6], 

0
0 0

0

tan( ) tan( )
tan( ) 2

L
in

L

Z jZ lZ Z jZ
Z jZ l

jβ π
β

+
= =

+
= ∞   (3.1) 

 

/4L λ=

Dipo le  Antenna P EC Ground  

Fig. 3.1 (a) Dipole antenna above a PEC ground at a quarter-wavelength distance 

0Z

/4L λ=

P EC Ground

inZ

 

Fig. 3.1 (b) Equivalent circuit to calculate the input impedance 
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  The major disadvantage of this approach is that a quarter-wavelength in free space at 915 

MHz is about 8 cm, which is too large for most RFID applications. The method to calculate 

the radiation impedance of the dipole antenna is not fully accurate since the distance between 

the dipole antenna and ground surface is less or equal to / 4λ , which is still in the Fresnel 

near-field region. In this region, an existing electric field in the radial direction can’t be 

accounted for by the parallel plate transmission line model.  However it shows approximately 

that at a distance of / 4λ  from the PEC ground, the antenna input impedance would be 

boosted rather than being shorted out.  

  A quarter-wavelength dipole antenna at 915 MHz with a radius of 0.5 mm has an input 

impedance of 83+j56 in free space according to the HFSS simulation.  If the dipole antenna 

is located at / 4λ  distance from an infinite PEC ground, the input impedance of the dipole 

antenna increases to 99.6+j92. Therefore, for a real good impedance matching, the distance 

between the dipole antenna and ground has to be different from a quarter wavelength.  

 

• Inserting high permeability isolator 

   Magnetic material with a high permeability would increase the characteristic impedance of  

the material between the antenna and ground. In this way, even with a distance smaller than 

one quarter wavelength in air, the source driving the antenna still sees a relatively large 

impedance. The disadvantage with this method is that the magnetic material is lossy in the 

GHz frequency range, which dramatically reduces the radiation efficiency of the dipole 

antenna as will be shown in Chapter 4. These materials are very heavy and their cost is high. 

 

• Using metamaterial or left-handed material to isolate the metal ground 
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   Recently, it has been reported [22] [23] [24] that metamaterials’ or left-handed materials’ 

own distinct characteristics in a certain frequency band which can be used to block the 

shorting effects of the ground surface. Another similar idea was to build an electromagnetic 

(EM) absorber such as placing a frequency selective surface (FSS) above a PEC ground 

plane to absorb the incident wave without reflection.  

 

• Changing the structure of the RFID tag antenna 

   Some antenna structures are known to be able to work on metal, for example a microstrip 

antenna.  It may be possible to shrink the size and thickness of the microstrip antenna to 

make it suitable for use on a metal surface. Two major types of novel metal-surface 

mountable RFID transponder antenna were invented, simulated and experimentally verified. 

The details are developed in Chapter 4.  

 

3.3 Frequency Selective Surface 

3.3.1 Introduction 

One of the largest challenges for the RFID industry has been the low radiation efficiency of 

the transponder when it is horizontally attached to a smooth conductive surface. A modified 

conductive surface with a periodic structure was discovered to exhibit a high impedance 

electromagnetic band gap (EBG) characteristic in a certain frequency band [24]. The 

mushroom-like structure would reflect an incident plane wave in phase rather than out of 

phase as would be expected from a smooth metal surface.  The tangential electric field on the 

surface isn’t shorted out as with a normal metal ground surface. Its application to antennas 
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has been extensively studied in [22] [23] [24] [25] [26]. It is shown that EBG structures can 

be utilized to improve radiation efficiency of a metal-surface mounted wire antenna. 

Although mushroom-like EBG structures [24] can be built on RF boards by modern printed 

circuit technology, vias in the mushroom-like structure connecting the upper and lower metal 

surfaces increase the production cost. A periodic mushroom-like structure without vias can 

be classified as a frequency selective surface (FSS) [27].  The integration of a square patch 

FSS and dipole antenna has been found to constitute a surface wave antenna [28]. Their 

application to high gain planar antennas is reported in [29].  Previous work considered 

mainly the reflection phase characteristics of a FSS. With a zero degree reflection phase, the 

material can be specified as a perfect magnetic conductor (PMC). However, this approach 

needs to be improved since it doesn’t consider the complex near field interaction between an 

antenna and a FSS. In this dissertation, a novel design approach based on transverse magnetic 

(TM) and transverse electric (TE) wave properties is demonstrated [22]. The topic of a FSS 

on boosting the radiation efficiency of a half-wavelength dipole is treated in more detail.  

  A planar 2D periodic patch array was first designed based on an LC equivalent model and 

3D electromagnetic simulation. In order to experimentally study the effects of the FSS to 

boost the radiation efficiency of metal-surface mounted dipole antennas, the structure was 

fabricated on a FR4 board.  Transmission properties of a TM and a TE wave along the 

surface were studied and measured in the lab.  Our study found that when dipole antennas are 

resonant in a frequency band where a TM wave is suppressed but a TE wave is supported, the 

dipole antennas can be easily integrated onto a FSS with very good input matching and 

radiation efficiency.  

  With the purpose of simulating the real wireless communication environment, a two-port  
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network analyzer was operated as a transmitter and a receiver. Two half-wave dipole 

antennas were connected to the transmitting port and receiving port of the network analyzer. 

By means of S parameter measurements, the radiation efficiency of a dipole antenna in free 

space, horizontally above a normal metal surface and above a FSS were evaluated. Measured 

results of return loss and transmission coefficient demonstrate that the FSS structure can be 

utilized to effectively enhance the radiation efficiency when low profile wire antennas 

backed by a metal surface are desired.  

 

3.3.2 Reflection phase above a PEC, PMC and FSS  

As shown in Fig. 3.2, a TEM plane wave propagates along the negative x direction and is 

perpendicularly incident to an FSS at the yoz plane. The incident and reflected electric fields 

are written as, 

 

y z

x

square patch

air

zH
yE

ground

p

g

t

w

dielectric layer

k

 

Fig. 3.2 A plane wave incident to a FSS backed by metal ground 
 

 

0
jkx

inc E e= yaE                     (3.2) 
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 0
jkx

ref E e−= ΓyaE                             (3.3) 

where is the wave number andk Γ is the reflection coefficient, the phase of Γ  defines the 

reflection phase of the surface. 

  The similarities between the transmission of a plane wave and a transmission-line wave 

allow us to treat the free space as an array of parallel plate waveguides. Assuming each 

parallel plate waveguide has a width w  and a height h , a simple relationship between the 

electric field  and voltageV and the magnetic field E H  and current I holds, 

VE h=  , IH w=                           (3.4) 

  Therefore the wave impedance η  can be written as, 

E V w
H I hη = =              (3.5) 

   It is then obvious that the voltage reflection coefficient is equal to the reflection coefficient 

of the electric field. For the square patch case, we choose  equal to .  w h

  Therefore the wave impedance is equal to the characteristic impedance of the transmission 

line, 

0

0

L L
L

L L

Z Z Z
Z Z Z

η
η

− −Γ = =
+ +

                    (3.6) 

  Mushroom-like EBG structures can be approximated by a LC circuit model [30].  Fringing 

capacitance C between two metal patches is derived by conformal mapping. Inductance L at 

resonance is derived by a solenoidal approximation. Even though the LC model was 

developed based on a mushroom-like EBG structure, our simulated and experimental results 

demonstrate that the formula from [30] predicts the resonant frequency of a FSS reasonably 

well. The formulas are listed here,  
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10 1( ) cos ( )rw pC
g

hε ε
π

−+
=         (3.7)  

= rL tμ                                    (3.8) 

where the period p  is defined as the shortest distance between the centers of any two metal 

patches,  is the space between two metal patches, and t  is defined as the distance from the 

top metal layer to the ground metal layer and is equal to the thickness of the board material.  

g

  For an infinite square array with a period of 19 mm, width 18 mm, gap 1 mm, dielectric 

thickness 1.5 mm and dielectric constant 4.17, (3.7) and (3.8) give an effective capacitance of 

0.95 pF and an equivalent inductance of 1.89 nH, respectively. The calculated resonant 

frequency is 3.76 GHz. The FSS was made on a FR4 board, whose photograph is shown in 

Fig. 3.3.  

 

f 

Fig. 3.3 Fabricated square patch FSS using FR4 board with a period of 19 mm, width 18 mm, gap 1 

           mm and board thickness 1.5 mm 
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  When the artificial parallel plate transmission line has the FSS as its load terminal, the load 

is equivalent to a shunt inductance L and capacitance C. The equivalent model for a plane 

wave normally incident to the EBG surface is shown in Fig. 3.4.  

 

LC0Z
k

 

Fig. 3.4 Transmission line equivalent circuit for a plane wave incident to the EBG surface 

 

  The load impedance is written as,  

21L
j LZ

LC
ω
ω

=
−

     (3.9) 

The inductance in a unit cell and the gap capacitance between two square patches are 

calculated by (3.7) and (3.8).  

   At the parallel resonance frequency, magnetic energy and electric energy exchange back 

and forth between them. The load input current is zero for a lossless resonator. Thus the 

equivalent load impedance is infinite. From (3.6), the reflected electric field is in phase with 

the incident field.  

  From (3.6) and (3.9), the reflected phase of the EBG surface is derived as, 

2

2
(1 )( ) ( )
(1 )L

j L Lphase phase C
j L L
ω η ω
ω η ω

− −Γ =
+ − C

   (3.10) 

In phase reflection in a certain frequency band is a major nature of a FSS or a mushroom-

like EBG structure. An infinite periodic array can be simulated more efficiently by a unit cell 
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since the electric field and magnetic field at different cells are related by a phase shift. Time 

harmonic electric field in an infinite planar periodic array with a period xD  and yD  can be 

found by Floquet’s equation [27],  

 ( )( , , ) ( , ) x x y y zj D D j z
x yx D y D z x y e eβ β β− + −+ + =E E         (3.11) 

where xβ yβ  and zβ  are wave numbers in x, y and z direction, respectively.  

  A full-wave 3D EM simulation software HFSS [10] is utilized to analyze the infinite 

periodic structure. The reflection phase characteristics of a FSS are extracted using the same  
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Fig. 3.5 Calculated and simulated reflection phases above a FSS made by FR4 board with a period of 

 19 mm, width of metal patch 18 mm and thickness 1.5 mm 
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method as [24]. The resonant frequency is defined when the reflection phase at the FSS is 

equal to zero. In Fig. 3.5, the reflection phase derived from HFSS simulation is plotted in 

solid line with triangle symbols, which shows a resonant frequency of 3.42 GHz. The 

calculated reflection phase based on (3.10) is plotted in solid line with square symbols. A 

good agreement is observed but the analytical model gives a higher resonant frequency. The 

reason is that the capacitance derived by the conformal mapping doesn’t account for the 

effects of the ground metal surface, which makes the calculated capacitance smaller than it 

should be. 

  The zero degree reflection phase corresponds to a parallel resonant frequency of the unit 

cell, where magnetic energy and electric energy exchange forever. The lossless parallel LC 

resonator has infinite input impedance and zero input current. From (3.6) and (3.9), it can be 

seen that the reflected electric field is in phase with the incident electric field. The FSS at the 

resonant frequency resembles a perfect magnetic conductor (PMC). Since on a PMC surface, 

in order to satisfy the boundary condition, the sum of the total tangential magnetic fields 

should be zero, the reflected tangential magnetic field should be 180 degrees out of phase 

compared to the incident magnetic field near the surface. Therefore, the tangential electric 

field doesn’t have any phase change in order to maintain the propagation direction of the 

reflected wave. For a PEC surface, to satisfy the boundary condition of zero tangential 

electric field, the tangential electric field has to be 180 degrees out of phase compared to the 

incident electric field near the surface, which is seen from (3.9) by letting load impedance to 

be zero for a PEC case.  
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3.3.3 Radiation characteristics based on reflection phase 

  By image theory, a dipole antenna above a PEC surface can be treated as a two-dipole 

antenna array which has a 180 degree phase difference between the two excitation currents 

[5].  Based on the theory of a phase array, the radiation characteristics of a dipole antenna 

above a surface which has any reflection phase can be derived analytically.  

 
 

Fig. 3.6 Dipole antenna horizontally placed above a FSS 
 

  As shown in Fig. 3.6, a dipole oriented in the z axis is placed on the axis with a vertical 

distance h from the FSS with reflection phase

x

β . The array factor can be derived as [5], 

Array factor =  2cos( sin cos / 2)kh θ φ β−              (3.12) 

The element factor based on the placement of the dipole can be written as:   

Element factor =
/2

0
cos( cos ) cos( )2

2 sin

jkr j
kL kL

I e ej r

β θ
η

π θ

−
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
      (3.13) 

where L is the length of the dipole antenna 

  The total far field Eθ is equal to the product of array factor and element factor.  The 

radiation resistance, gain and radiation pattern can then be derived once the total field is 

known.  
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  If the dipole is placed closely above a PEC surface, β  is equal to 180 degrees and kh 0≈ . 

The array factor is almost zero. In the limit, no electric field would be radiated and the 

radiation resistance becomes,  

    2 0( )rad
r

PR
I

= ≈ Ω              (3.14) 

  When the dipole is placed closely above a PMC surface, β  is 0 degree and kh 0≈ . The 

array factor is equal to two. The electric field radiated by the dipole array is twice of that of 

one dipole antenna. It is predictable that the radiation resistance should be doubled. The array 

factor shows that the total radiation pattern is affected by the distance h and reflection phase 

. One of the limitations of this approach is that the near field interaction between dipole 

antennas and the substrate surface have not been considered since the above formulas are 

based on the far field approximation.   

β

 

3.3.4 Radiation impedance of the dipole antenna above a finite PEC surface 

When a dipole antenna is placed closely above a PEC surface, a TEM plane wave 

propagates in the region immediately between the antenna and PEC surface. In other words, 

the metal conductor of the antenna and the PEC surface create a microstrip line. Due to the 

odd symmetry, in order to short out the dipole antenna, the PEC plane doesn’t require a huge 

size. Table 3.1 shows the variation of the input impedance when the width of the PEC plane 

is varied but the length is kept the same as is computed by HFSS V10 [10]. The vertical 

distance is 1 mm between the dipole antenna and PEC surface. The width of the dipole arm is 

w. The results show that a very narrow PEC or conductor can short out the dipole antenna.  
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Table 3.1 Input impedance of a quarter-wavelength dipole above a PEC Plane by HFSS simulation             

Width of the PEC/PMC 

plane Length = / 2λ  

Input Impedance 

(Ohms) 

Infinite large 0.27-j13.1 

64w 0.50-j12.0 

32w 0.51-j12.0 

16w 0.77-j11.8 

8w 1.28-j11.6 

4w 2.84-j9.7 

2w 5.6-j7.2 

1w 9.4-j4.4 

0.5w 13.3-j6.6 

0 (in free space) 71.7-j0.71 

 

 

3.3.5 TM, TE wave measurements    

  Since any field configuration can be derived by a linear superposition of TE and TM modes,  

it is very instructive to measure the transmission properties of TE and TM waves across the 

FSS.  Two monopole probes fed by coaxial cables were built and soldered to the FSS board. 

For TM wave measurements, as shown in Fig. 3.7, two vertical monopole probes oriented in 

the x direction were placed on the surface [24]. In this case, the magnetic field primarily has 

a tangential y component, and electric fields have normal x and tangential z components. The 

existence of an electric field in the z direction is necessary in order to compensate for the loss  
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and sustain the flow of surface current along the z direction. 
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Fig. 3.7 Cross-section view of the TM wave measurements 
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Fig. 3.8 Cross-section view of the TE wave measurements 

 

  For TE wave measurements as shown in Fig. 3.8, two horizontal monopole probes oriented 

in the y direction were placed above the surface with a small distance [24]. The electric field 

primarily has a tangential y component, and magnetic fields have normal x and tangential z 

components.  

  Measured transmission properties of TM and TE waves across the FSS are illustrated in Fig. 

3.9 (a) and (b), respectively. Transmission of the TM wave drops significantly from -25 dB at 

3.3 GHz to below -50 dB at 3.8GHz, which is the TM wave bandgap frequency band.  
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      (c)                      (d) 

  Fig. 3.9 (a) Transmission of TM wave across the frequency selective surface   

   (b) Transmission of TE wave across FSS  

    (c) Transmission of TM wave across a smooth metal surface  

   (d) Transmission of TE wave across a smooth metal surface  

 

Transmission of the TE wave drops noticeably around 3.85 GHz from -31 dB to below -60 

dB at 4.0 GHz. From 2.5 GHz to 3.85 GHz, the transmission coefficient is maintained at a 

relatively flat level about -30 dB. In order to examine the difference, the transmission 

property of a TM wave across a metal surface is shown in Fig.3.10 (c) and is relatively flat at 
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around -33 dB. It is clear from Fig. 3.10 (d) that the TE wave can not be supported by a flat 

metal surface.  

 

3.3.6 Metal-surface mounted dipole antenna  

A. Metal surface mounted dipole antenna design issues 

  Metal surfaces can be combined with an antenna to build reflector antennas and increase 

radiation in a certain direction. However, when a metal surface is horizontally placed below a 

dipole antenna, the image current forces the tangential electric field at the metal surface to be 

zero. The image current becomes 180 degree out of phase with the original current.  The 

driving-point impedance of two side-by-side antennas 1 and 2 can be represented by the 

following equations [5], 

1 2
11 121

1 1
d

V IZ Z ZI I= = +             (3.15) 

2 1
22 212

2 2
d

V IZ Z ZI I= = +            (3.16) 

where 11Z  and 22Z are the input impedances of antennas 1 and 2 in free space, 12Z  and 21Z are 

the mutual impedances due to the existence of each other. When the distance between 

antennas is very small, the mutual impedance becomes equal to the self impedance thus 

radically changing the driving-point impedance 1dZ or 2dZ .  The driving-point impedance 

would be reduced to zero with two currents of equal magnitude but opposite phases. This 

corresponds to the case when a dipole antenna is horizontally placed above a PEC plane 

within a very short distance. The driving-point impedance can also be doubled if the PEC  
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plane is replaced by a perfect magnetic conductor (PMC) plane. 

  When a PEC surface is placed horizontally below a dipole antenna, only a vertical electric 

field and tangential magnetic field exist and propagate along the surface. If the PEC surface 

is replaced by a flat metal surface, an axial electric field has to exist to compensate for the 

power loss due to the finite electric conductivity of the metal. A TM surface wave along the 

surface would be excited and propagate across the metal surface, reducing the driven-point 

input impedance of the dipole antenna. 

  When a PMC plane is placed horizontally below a dipole antenna, a normal magnetic field 

and a tangential electric field exist and propagate along the surface.  If the PMC surface is 

replaced by a magnetic surface with a finite magnetic conductivity, an axial magnetic field 

would exist. A TE surface wave along the surface would be excited and it would propagate 

along the surface, increasing the driving-point impedance of the dipole antenna. Since on a 

PEC surface, the tangent electric field and normal magnetic field are zero, a smooth metal 

surface has the nature to suppress a TE surface wave but support a TM surface wave across 

the surface.  

In order to boost the input impedance when the dipole antenna is placed horizontally above 

a FSS, a TM surface wave on the surface should be suppressed since it reduces the input 

impedance. However a TE surface wave on the surface should be supported since the mode 

would increase the input impedance. Based on the results of TM and TE wave measurements 

shown in Fig.2.7 (a) and (b), 3.722 GHz is chosen since it falls into the TM surface wave 

band gap but is located within the transmission band of a TE surface wave. Experimental 

results are shown in the next subsection.  
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B. S parameters measurements 

  Two half-wavelength dipole antennas which have a length around 0.47  at 3.722 GHz 

were built and matched to a 50 ohm coaxial cable. They were connected to the transmitter 

and receiver ports of a network analyzer, respectively. When two well matched (including 

impedance match and polarization match) dipole antennas radiate in free space with a 

distance 21.4 cm, the power gain obeys Friis transmission equation [5], 

λ

2( )4
r

t r
t

P G GP R
λ
π

=       (3.17) 

  By substituting the free space wavelength λ  at 3.722GHz, the gain of a dipole antenna 

1.643, and a spacing of 21.4 cm,  can be calculated as -26.2 dB since the power gain with 

perfect matching can be reduced to  (in dB) [20].   

21S

S21

  Measured data plotted in Fig.3.10 (a) gives -25.3 dB at 3.722 GHz, which shows a good 

agreement with the theoretical result.  Fig. 3.10 (b) shows that a flat metal plate at a close 

distance from the antenna will cause an impedance mismatch and low radiation efficiency.   
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Fig. 3.10 (a) S parameters of two dipole antennas communicating in free space   

              (b) S parameters when one piece of metal is put parallel to one dipole antenna with 1 mm 

       distance   

             (c) S parameters when FSS is put parallel to one dipole antenna with 1 mm distance  

 

  As shown in Fig. 3.10 (c), when a board with a FSS is placed parallel to one dipole antenna 

with 1 mm spacing, the transmission coefficient maintains the same level as the free space 

case but the return loss is enhanced from -5.6 dB to -24.5 dB. Since the impedance 

mismatching reduces, the radiation efficiency would increase evidently. 

 

3.4 Mushroom-like electromagnetic bandgap material  

3.4.1 Introduction 

  As an extension of our research on a low profile dipole antenna backed by a frequency 

selective surface (FSS) [22], further research finds that the same design approach is 

applicable to a mushroom-like high impedance EBG surface. The mushroom-like EBG 

surface is shown in Fig. 3.11. 
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  Transmission properties of a TM and a TE wave on the EBG surface were measured using 

two monopole antennas. Their different effects to vary the antenna input impedance are 

discussed. A dipole antenna integrated with the EBG ground surface was built based on the 

new design approach [23]. A two-port network analyzer is utilized to verify the improvement 

of radiation efficiency of the low profile dipole antenna. 

y z

x

air

ground

substrate

via metal patch

 

Fig. 3.11   Coordinates and side view of the mushroom-like EBG 

 

  3.4.2 Design of a mushroom-like EBG structure  

   For an infinite array with a period of 19 mm, width 18 mm, gap 1 mm, dielectric thickness 

1.5 mm and dielectric constant 4.17, the reflection phase profile shows the resonant 

frequency is around 3.42 GHz, which was derived by a 3D EM simulation tool and shown in 

Fig. 3.12.  If the vias in the mushroom-like EBG are removed and the other parameters are 

kept the same, the reflection phase is almost the same [22]. A 9 by 8 square patch array was 

fabricated on a FR4 board with length 18 cm, width 15 cm and thickness 1.5 mm.  Each via 

has a diameter of 0.5 mm made by copper wire. Fig. 3.13 shows the photograph of the 

fabricated board. 
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Fig. 3.12  Reflection phase of mushroom-like EBG surface 

 

 

Fig. 3.13 Fabricated EBG surface using FR4 board with length 18 cm, width 18 cm and thickness   

              1.5 mm 
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3.4.3 TM and TE waves 

  When a surface wave is guided by a planar interface, it is very similar to a plane wave 

except that it has an exponential attenuation normal to the interface.  A detailed study of the 

transmission characteristics of TM and TE waves along the mushroom-like EBG structure 

would allow us to understand the complex near field interaction between the dipole antenna 

and EBG surface.  

  Transmission properties of a TM and a TE wave on the EBG surface and a smooth metal 

plane are shown in Fig. 3.14. The transmission coefficient of a TM wave across the EBG 

surface changes from -27 dB at 3.5GHz to below -50 dB at 3.74 GHz, which confirms the 

existence of the TM wave bandgap. The transmission coefficient of a TM surface wave on a 

smooth metal surface is kept at a relatively flat level of about -31 dB over the frequency band 

from 3 GHz to 6 GHz, which shows a smooth metal surface is capable of guiding TM waves. 

The result agrees with the theoretical conclusion that a TM surface wave should be guided by 

an inductive surface. During the TM bandgap frequency, the EBG surface exhibits different 

characteristics from that of a normal metal surface. For a TE wave on a smooth metal surface, 

the transmission level is almost flat at -60 dB. When the frequency is lower than 4 GHz, 

transmission coefficients of the TE wave on the EBG surface are always 10 dB higher than 

on the metal surface. It demonstrated that a planar metal surface naturally suppresses a TE 

surface wave but the capacitive EBG surface supports it. It is consistent with the conclusion 

that a TE surface wave has to be guided by a capacitive surface. 

    When a dipole antenna is placed closely and horizontally above a good metal ground 

surface, a TM wave is guided on the interface but a TE wave is naturally suppressed. The 

input impedance of the dipole antenna will decrease dramatically since the vertical electrical 
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   (c)     (d) 

Fig. 3.14 (a) Transmission of TM wave on the EBG surface 

  (b) Transmission of TE wave on the EBG surface 

  (c) Transmission of TM wave on a smooth metal surface 

 (d) Transmission of TE wave on a metal surface 

 

field travels a very short distance to the metal ground surface. For the same reason, when the 

metal surface is replaced by a mushroom-like EBG ground, the TM wave will tend to reduce 

the antenna input impedance. In order to achieve larger input impedance, the TM wave has to 
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be suppressed. Since the tangential electric field and normal magnetic field can’t exist on a 

PEC plane, a very good metal plane has the nature to suppress a TE wave.  When a dipole 

antenna is horizontally and closely placed above a PMC plane, only a tangential electric field 

and normal magnetic field can exist. The input impedance of the antenna will be nearly 

doubled due to the tangential electric field being almost doubled by the in-phase image. In 

order to boost the tangential electrical field and thus increase the antenna input impedance, a 

surface guiding TE wave is desired.  

 

3.4.4 Design and verification of the low profile dipole antenna  

  Based on the results of the TE and TM wave measurements in Fig. 3.14 (a) and (b), a design 

frequency 3.722 GHz is chosen since it falls within the TM surface wave band gap but is 

located in the transmission band of the TE  surface wave.   

  Two half-wave dipole antennas resonant at 3.722 GHz in free space were built. They were 

connected to the transmitting and receiving port of a network analyzer. The horizontal 

distance was 21 cm. The arms of the dipole antennas were positioned horizontally above a 

ground plane and parallel to each other. Based on scattering parameter measurements, the 

input impedance can be readily read from the  plot; power gain between the two antennas 22S

was read by  in dB when the antennas are perfectly matched. All of the following 

discussion about the S parameters measurements considers the design frequency 3.722GHz 

only.  Fig. 3.15 (a) shows the S parameters when the two dipole antennas radiate in free 

space. For the two well matched dipole antennas with zero polarization loss, Friis 

transmission equation gives a power gain of approximately -26 dB. Our measured results  

12S
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              (c) 

Fig. 3.15 (a) S parameters when dipoles are placed in free space    

               (b) S parameters when one metal plate is placed parallel to one dipole antenna with 0.5mm 

        distance   

   (c) S parameters when  the EBG surface is placed parallel to one dipole antenna with 0.5 mm 

        distance   

 

show when input reflection coefficient S22 is -36 dB, the power gain S12 reaches -25.3 dB, 

which agrees well with the calculated results.  When a smooth copper sheet with the same 

size as the EBG surface is closely and horizontally (0.5 mm distance) placed above the dipole 
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antenna at port 2, the input impedance matching degrades dramatically from -36 dB to -2.5 

dB, which means more than 56% of the power is reflected back to the source. Mismatch 

reduces the antenna radiation efficiency to 44% and the transmission coefficient to -29.6 dB 

if the antenna is assumed to be lossless. The measured data of transmission coefficient show -

33.4 dB. The extra power loss likely comes from propagation of TM waves on the copper 

sheet. Once the cooper sheet is replaced by a mushroom-like EBG ground surface, the 

radiation efficiency of the dipole antenna recovers to the same level as in free space. The 

Smith chart displays the antenna input impedance of 50.1+j2.8 ohms, which corresponds to -

31 dB if the magnitude of S22 is plotted in dB. The transmission coefficient S12 is -25.7 dB as 

in free space. The result confirms the effectiveness of applying the new design approach to 

the mushroom-like EBG ground surface. 

 

3.5 A further exploration of the FSS and Mushroom-like EBG  

3.5.1 Reflection phase  

  For the 9 by 9 square patch array made on FR4 board with a period of 19 mm, width 18 mm, 

gap 1 mm, dielectric thickness 1.5 mm and dielectric constant 4.17, the effective capacitance 

and equivalent inductance is 0.953 pF and 1.885 nH, respectively.  The calculated reflection 

phase based on (3.10) is plotted in Fig. 3.16 with a solid line.  The reflection phase of 

mushroom-like structure is plotted with circles in Fig. 3.16. The reflection phase of a FSS 

backed by the metal ground is plotted with a dashed line. It shows that the reflection phase 

profile doesn’t depend on whether there are vias connecting the top metal patch to the bottom 

metal ground. With vias, the structure is a mushroom-like EBG surface. Without vias, the 

structure is a FSS backed by a metal ground. The reflection phase properties for both of them 
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have negligible difference. As we have discussed in the previous section, the calculated 

resonant frequency is a little bit larger than the more accurate results from HFSS simulation. 
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Fig. 3.16  Reflection phase above FSS and mushroom-like EBG surface 
 

3.5.2 TM waves 

A. TM wave across the FSS and mushroom-like EBG surface 

  Transmission properties of a TM wave across the EBG surfaces are illustrated in Fig.3.17. 

The solid line plots the transmission coefficient of a TM wave across the mushroom-like 

EBG surface. The solid line with “+” mark is the transmission coefficient of a TM wave 

across the FSS. The dash-dot curve shows the simulated transmission coefficient of a TM 

wave across the FSS computed by Ansoft HFSS V10 [10].  
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  Fig. 3.17 Measured and HFSS simulated transmission coefficient of a TM wave across  the FSS      

     and mushroom-like EBG surface with a period of 19mm, width of metal patch 18 mm and 

     thickness 1.5mm 

 

  Fig. 3.17 shows that both the FSS and mushroom-like EBG exhibit very similar 

transmission properties for a TM wave. The transmission of a TM wave drops clearly from  

-25 dB at 3.3GHz to below -50 dB at 3.8GHz, which shows the bandgap characteristics. The 

transmission coefficient of a TM wave across a 9 by 9 FSS array is derived by 3D HFSS 

simulation. All of the components for measurements including the board material with a 9 by 

9 FSS, two monopole probes and metal ground are accurately modeled in HFSS V10 [10]. 

Due to the complicated geometry, large aspect ratio, unusual bandgap properties and wide 

frequency range, the simulated results have to be divided into several frequency bands in 
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order to generate meaningful results. From 0.122 GHz to 3.122 GHz, the simulated 

frequency step is set as 0.1 GHz due to the relatively smooth transition. From 3.122 GHz to 

4.522 GHz, a 0.01 GHz frequency step is applied to reveal the bandgap properties. From 

4.522 GHz to 5.922 GHz, a 0.1 GHz frequency step is used since the transition is smooth. 

The center frequency of the simulation is set to 3.722 GHz. The transmission property was 

computed for a total of 185 frequency points. With Ansoft HFSS V10 [10] and a Dell PC 

with 3.6 GHz CPU and 3.25GB memory, the overall simulation takes more than 40 hours.   

Fig. 3.17 shows a good agreement between simulation and measurements for this 

complicated EBG structure.   
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Fig. 3.18 Measured and simulated TM wave across a flat metal surface at the same size as 
   the board for FSS  
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  As a comparison, the transmission coefficient of a TM wave across a flat metal surface the 

same size as the FSS board is measured and plotted in Fig. 3.18. It is plotted with a solid line 

marked by “+” symbol. The simulated results given by HFSS are plotted with a solid line. It 

can be seen that from 3 to 5 GHz, the transmission coefficient is relatively flat, which shows 

a smooth metal surface (inductive) is capable of guiding a TM wave. 

 

B. A circuit model for a TM wave across the EBG surface   
 
  The surface impedance for a TM surface wave can be written as [31], 

TM
s

jZ α
ωε

=             (3.18) 

where α  is the decay constant. It shows that a TM surface wave should be supported by an 

inductive surface, for example, a smooth metal plane. Fig. 3.18 is an example of an inductive 

surface that supports the TM wave including the TM surface wave. 

  When a TEM plane wave is normally incident on an EBG surface, the equivalent circuit of 

the EBG surface is described as a parallel LC resonator as shown in Fig. 3.4.  

 

      

Fig. 3.19 (a) Forward transmission line LC model             (b) Backward transmission line CL model 

 

   When a TM wave is launched onto a lossless microstrip transmission line [20], the excited  
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electromagnetic wave will propagate along the metal surface, and is associated with a surface 

current. For this case, a distributed LC equivalent circuit model as shown in Fig. 3.19 (a) is 

named as a forward transmission line (TL).  

  Similarly, when a TM wave is launched onto an EBG surface, a surface current will be 

excited and propagate along the surface. A dual CL equivalent circuit is shown in Fig. 3.19 

(b), to model the transmission of a surface current across the EBG surface [32]. It is 

designated as a backward transmission line (TL) [33].  

  For a forward transmission line shown in Fig. 3.19 (a), and considering the time harmonic 

case, the equations can be easily derived by Kirchhoff’s voltage law (KVL) and Kirchhoff’s 

current law (KCL),  

  ( ) ( )dV z j LI z
dz

ω= −       (3.19) 

  ( ) ( )dI z j CV z
dz

ω= −       (3.20) 

  As the dual of the forward transmission line, the backward transmission line [33] in Fig. 

3.19 (b) obeys the following equations,  

                    ( ) 1 ( )dV z I z
dz j Cω

= −         (3.21) 

   ( ) 1 ( )dI z V z
dz j Lω

= −      (3.22) 

2
2

2
( ) 1 1 ( ) ( )d V z V z V z

j C j Ldz
γ

ω ω
= =     (3.23) 

1 1 jj j C j L LC
γ β

ω ω ω
= = = −     (3.24) 
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2
p LCων ω

β
= = −      (3.25) 

2
gv d LC

d
ω ω
β

= =      (3.26) 

  For an x polarized plane wave propagating in the z direction in a lossless and source-free 

region, the governing first order wave equations are written as,  

( ) ( )x
y

dE z j H z
dz

ωμ= −      (3.27) 

( )
( )y

x

dH z
j E z

dz
ωε= −       (3.28) 
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Fig. 3.20 Phase velocity and group velocity of backward and forward transmission lines 



www.manaraa.com

81 
 

  For the backward wave transmission line, as compared to the plane wave case, the 

equivalent permeability and permittivity are negative.  

2

1
C

μ
ω

= −     2

1
L

ε
ω

= −     (3.29) 

As shown in Fig. 3.20, the phase velocity and group velocity for a backward transmission 

line have opposite signs. For a forward transmission line, they have the same signs.  

  A common forward transmission line has a series L and a shunt C. The shunt C is not able 

to hold the charge in the unit cell since the charge can be readily discharged to the next LC 

unit cell. However, a unit cell in a backward transmission line has a series C and a shunt L. 

The series C is in the center of the unit cell and when C discharges, the electric energy will 

be transformed into magnetic energy inside the unit cell. This is the essential difference 

between a backward transmission line and forward transmission line. The distinct property of 

the backward transmission makes a parallel resonator possible.  

  A well-known equivalent circuit model considering the parasitic capacitance and inductance 

[32] is redrawn in Fig. 3.21. gC  represents the gap capacitance between metal patches. sL  

represents the parasitic serial inductance.   represents the equivalent parallel inductance to  pL

 

gC sL

pL pCUnit ce ll

 

Fig. 3.21  Equivalent circuits for TM wave across the FSS or Mushroom-like EBG [32] 
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ground.  represents the parasitic parallel capacitance. Based on the distributed circuit 

model, the bandgap frequency band can be found from the

pC

ω β−  diagram [32].  If the 

parasitic capacitance and inductance are ignored, the equivalent circuit model includes series 

capacitance and parallel inductance, as we have discussed before, which represents a 

backward transmission line.  

 

3.5.3 TE waves 

A. TE wave across the FSS and mushroom-like EBG surface 
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Fig. 3.22 Measured and HFSS simulated transmission coefficient of a TE wave across the FSS  

   and mushroom-like EBG surface with a period of 19mm, width of metal patch 18 mm   

   and thickness 1.5mm 
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  The measured and simulated transmission coefficients of a TE wave across the FSS and 

mushroom-like EBG surface are shown in Fig. 3.22. The solid line represents the 

transmission coefficient of a TE wave across a mushroom-like EBG surface. The solid line 

marked by “+” is the transmission coefficient of a TE wave across the FSS. The dash-dot line 

is the simulated results of a TE wave across the FSS computed by 3D HFSS V10 [10].  It’s 

shown that the transmission of TE waves maintain at a relatively flat level from 2.5 GHz to 

3.85 GHz.  However, after 3.9 GHz, the transmission coefficients drop and never rises up 

again, which shows that the TE wave is unable to be supported by the EBG surfaces above 

that frequency. The FSS array and mushroom-like EBG surface demonstrate similar TE wave 

properties, which agree well with the 3D HFSS simulation.  Different from a TM case, there 

are no observed bandgap regions for TE waves. 
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Fig. 3.23 Measured and simulated TE wave across a flat metal surface 
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  The transmission properties of a TE wave across a metal surface are plotted in Fig. 3.23. 

The solid line represents the measured transmission coefficient. The dash-dot is the simulated 

results computed by HFSS.  It’s clear that the metal surface is not able to support the 

propagation of TE wave.   

 

B. A circuit model for a TE wave across the EBG surface  

  The surface impedance for a TE surface wave can be written as [31], 

TE
s

jZ ωμ
α

−=                (3.30) 

When a TE surface wave is launched at the interface, a necessary condition for its 

existence and propagation is that the surface impedance is capacitive. If the surface 

impedance is inductive such as a smooth metal surface, the TE surface wave will be 

suppressed, which can be seen from Fig. 3.23.  It can be understood since a TE wave 

includes a tangential electric field and vertical magnetic field but a smooth metal surface 

supports a normal electric field and tangential magnetic field, therefore the smooth metal 

surface would suppress a TE wave in nature. To sustain a tangential electric field and vertical 

magnetic field for the TE case, it requires the surface current to be formed into a loop on the 

surface. As shown in Fig. 3.24, when the TE wave propagates in the positive z  direction 

along a FSS or mushroom like EBG, the gap capacitance between two patches will allow the 

existence of the tangential electric field. The loop currents generate vertical magnetic fields. 

The opposite currents in the two loops will cancel each other and create a net equivalent 

current or E field along the y direction. For the TE wave, since only tangential electric field 

exists, there is no direct coupling between the top metal patches and bottom metal ground.  
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Fig. 3.24 Surface current due to TE wave on the EBG surface 
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Fig. 3.25 The equivalent LC circuit model for the TE wave across the EBG surface 

 

  As shown in Fig. 3.25, for a TE wave across the EBG surface, the equivalent circuit of 

serial LC circuits connected in a loop is originally proposed here. A split ring resonator has 
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been broadly studied in [34] [35]. From the series LC equivalent circuit, it can be seen that 

the FSS backed by metal ground or mushroom-like EBG surface is similar to the split ring 

resonator. The capacitor C represents the gap capacitance between metal patches. The 

inductor L represents the loop inductance. The current flows in a loop on the surface for the 

TE case, which is different from the TM case where the current flows in the backward TL. 

When loss is included, a series RLC circuit connected in a loop should be applied to 

represent the TE wave across the EBG surface. The L and C values for both TE and TM 

waves are the same. 

  As we have known, for a series LC resonator, at low frequency, the impedance is capacitive. 

Above the series resonant frequency, the impedance is inductive. From (2.30), a TE surface 

wave requires a capacitive surface impedance. Therefore a TE surface wave will be 

supported at a lower frequency range but suppressed at higher frequency. This conclusion is 

applied to the surface currents excited by all of the TE modes in agreement with the 

measured and simulated data shown in Fig. 3.26.  
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    Fig. 3.26 The calculated S21 for a unit cell on TE wave across the EBG surface 
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  Based on the previous calculation, Cg = 0.95 pF, L = 1.89 nH. The simulated transmission 

coefficient of 4 unit cells based on the LC parameters is plotted in Fig. 3.26 which shows a 

similar propagation property as the measured TE case. A series resistor R coming from the 

metal surface impedance equal to 0.016 ohms is included here.   

 

3.6 Hilbert curve  

A Hilbert curve has the theoretically infinite length in any finite area. Fig. 3.27 shows a 

fifth order Hilbert curve [36].   

 

 

Fig. 3.27 Fifth order Hilbert curve  

  

  For a metal trace, a longer length and thinner width means a larger inductance. It is also one 

type of metamaterial and demonstrates electromagnetic bandgap (EBG) properties [37]. For a 
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unit cell, if the inductance increases, with the same capacitance, the resonant frequency of the 

structure should be decreased [37]. The Hilbert curve is promising to reduce the size of the 

overall EBG material, however, due to the complexity of manufacture, further study was not 

conducted.  
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CHAPTER 4  

METAL-SURFACE MOUNTED RFID TRANSPONDER 

 

4.1 Introduction 

  In Chapter 3, the metamaterial has been demonstrated to be able to recover the radiation 

efficiency of dipole antennas horizontally mounted above metal surface. It is easy to be built 

by using the modern printed circuit board technique and integrate it with the RFID tag 

antenna. A major disadvantage for this approach is the relatively large area which is required 

by the metal material. For a very low profile design, each unit cell has dimension around a 

quarter wavelength. Even with a high dielectric material, an EBG material with a 9 by 9 array 

still occupies a large area, which is not desirable for the RFID industry. A good low-loss 

dielectric material such as Rogers’ material is relatively expensive. A superior approach is to 

change the antenna structure so that the antenna is able to radiate efficiently above a metal 

surface. The antenna of a RFID transponder should have an omnidirectional radiation pattern, 

high directivity and high radiation efficiency. The omnidirectional radiation pattern is 

important since we want any object attached by a RFID transponder to be recognized no 

matter where it is placed at a certain distance. As we have shown in Chapter 3, a higher 

directivity and higher efficiency corresponds to a larger reading/writing range. The overall 

geometry of the antenna should be as small as possible. A relatively small thickness is more 

important relative to the horizontal geometry. To make the design practical and low cost, the 

antenna design should have a simple geometric shape and adopt inexpensive material.  In one 

word, the antennas for RFID transponders should have superior performance, low profile, 
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compact size and low cost. The commonly used dipole antenna obviously is a good candidate 

even though it has a relatively small directivity. However, it is unable to work horizontally 

above a metal surface. 

  We invented two major types of planar antennas for metal-surface mounted RFID 

transponders that meet the above requirements.  One type of antenna has an inverted-L shape, 

which is a compact and low profile design. The other type of antenna is a slotted planar 

antenna design, which has a very high gain and longer reading range (> 10 m). Both of them 

are in the process of patent application and licensing [38] [39].  

 

4.2 A low profile metal-surface mounted RFID transponder antenna with a     

      slotted inverted-L shape  

4.2.1 Introduction 

  This invention proposes a high efficiency metal-surface mounted radio frequency 

identification (RFID) tag antenna which is operated in the ultra high frequency (UHF) band. 

This antenna has a slotted inverted-L shape. It has a compact size (1.3 inches by 2.6 inches), 

low profile (32 mils or 64 mils) and excellent reading range. The antenna is built on foam 

with 64 mils thickness and was tested with a Symbol RFID handheld reader (MC9000-G) 

with 4W EIRP.  The reading range is more than 20 feet. Commercially, the radiation patch 

and ground patch can be easily built on one thin layer by using an inexpensive silver printing 

process. The final antenna is built by folding the printed metal layer around an inexpensive 

foam substrate, which demonstrates that it has a very low fabrication cost. By simulation 

using a 3D electromagnetic simulation software HFSS, the antenna shows a 58% radiation 
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efficiency above 64 mils thick foam. It also exhibits an omnidirectional radiation pattern, 

which shows a directivity of 3 to 4 dBi in all of the elevation planes. Based on a 2:1 VSWR  

bandwidth standard, the proposed antenna has a bandwidth of 30 MHz, which is broader than 

the desired Industrial, Scientific and Medical (ISM) frequency band (902 ~ 928 MHz).  

 

4.2.2 Structure and performance of a slotted inverted-L antenna 

  The geometry of the proposed RFID tag antennas is shown in Fig. 4.1 to Fig. 4.4. Fig. 4.1 (a) 

and (b) illustrates the plan view and cross section view of the antenna. It is designed using a  

thin foam layer. The substrate thickness is variable.  If the thickness is increased, the 

radiation efficiency would increase proportionally. The biggest challenge for a metal surface 

mounted antenna is to maintain a very low profile but at the same time to achieve a very 

good radiation efficiency. For this design, a 64 mils (1.6 mm) thick foam layer with a 

dielectric constant of 1.2 and tangent loss of 0.001 is used as the substrate. The antenna is 

folded through the dotted line. Thus the overall horizontal size is about 2.6 inch by 1.3 inch. 

The radiation patch and ground patch is built on a 1.4 mil copper layer. The commercial 

Symbol RFID handheld reader (MC9000-G) with a 4W EIRP was applied to test the 

performance of the antenna above a 5 inch by 6 inch copper board. The maximum reading 

range at a horizontal direction is more than 20 feet (6 meters) which is good for most of the 

applications. If a higher reading range is desired, the patch size, slotted area and thickness 

can be adjusted. For this antenna structure, a bigger area and higher substrate height 

contribute to a larger directivity and radiation efficiency. Overall, a larger reading distance 

can be achieved.  If a smaller or thinner structure is desired, the size and height can be 

decreased by trading with the reading range. With a 32 mils thick substrate and the same 
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horizontal size, a reading range of 10 feet is achieved. By changing the width and length of 

the slotted air gap, the RFID tag antenna impedance can be varied and matched to the RFID 

chip impedance. No extra impedance matching elements are required.  

 

Folded along this line

2.6 inch

1.3 inch

RFID chip
feed line

slotted air gap

radiation patchground patch

 

Fig. 4.1 (a) Plan view of a slotted inverted-L RFID antenna built on foam 

 

2.6 inch
RFID chip

foam dielectric constant ≈ 1.2  64 mil

Ground patch

radiation patch

 

Fig. 4.1 (b) Cross section view of the slotted inverted-L RFID antenna built on foam 

 

   Fig. 4.2 demonstrates a variation of the slotted inverted-L RFID tag antenna, which is  

folded along a line which is a little farther from the edge of the slotted gap. The microstrip 

lines connected to the RFID chip are extended from the main body of the radiation patch. 

This structure may have a better reliability for manufacturing.   
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Fig. 4.2 Plan view of a slight different slotted inverted-L RFID antenna built on foam 

 

Fig.4.3 (a) and (b) demonstrates the structure built on RT/DUROID® R 5880. The dielectric 

constant is 2.2 and tangent loss is 0.0009. The horizontal size for a similar performance (20 

feet reading range) is smaller, about 2 inches by 1.2 inch. The thickness is 62 mils.  
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Fig. 4.3 (a) Plan view of a slotted inverted-L RFID antenna using RT/DUROID® R 5880 
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Fib. 4.3 (b) Cross section view of the slotted inverted-L RFID antenna using RT/DUROID® R 5880 
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Fig. 4.4 Plan view of a slotted inverted-L RFID antenna with a longer slot using RT/DUROID®  

 R 5880 

 

  Fig. 4.4 shows another variation of the slotted inverted-L RFID tag with a longer slot on the 

radiation patch.  

   By using a silver printing process, the radiation patch and ground patch can easily be built 

on one thin layer. Then a folding process can be applied to fold the structure onto a dielectric 

substrate (foam or other material). Foam is one of the most inexpensive substrates available 

in the market. Silver silk screen printing is a mature and inexpensive technology in industry. 

Therefore the overall cost per unit can be as low as $0.2, which is much lower than the 

commercially available $4~$6 RFID tag. Currently the best known commercially metal 

surface mounted RFID tag provided by Metalcraft I.D. Plates and Labels is about 1 inch wide, 

5.8 inch long and 200 mil thickness. The reading range is about 12 feet. Its overall size is 5.4 

times bigger than our invention made of foam. 
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4.2.3 Prototypes and test  

   A few prototypes were built on inexpensive foam and RT/ DUROID® R 5880.  The 

antenna shown in Fig. 4.5 (a) is built on foam and is 2.6 inch long, 1.3 inch wide and 0.064 

inch thick. The antenna shown in Fig. 4.5 (b) is 2 inch long, 1.2 inch wide and 0.062 inch 

thick.  

 

                     

           (a)       (b) 

Fig. 4.5 (a) The prototype of a slotted inverted-L UHF RFID tag built on foam 

 (b)  The prototype of a slotted inverted-L UHF RFID tag built on RT/ DUROID® R 5880 

 

  When an antenna, as shown in Fig. 4.5 (a) with a thicker foam structure (64 mil thickness, 

2.6 inch by 1.3 inch horizontal size), is placed above a large metal ground surface, the 

radiation efficiency simulated by HFSS is 58%. The directivity is 2.6, which is almost two 

times as large as a common dipole type RFID tag antenna. Table 4.1 shows the simulated 

results of the inverted-L antenna with different thicknesses, which shows the antenna 

impedance is not very sensitive to the thickness of the substrate for this structure.  
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Table 4.1 The simulated results for the slotted inverted-L antenna built on foam 

 Length

(inch) 

Width 

(inch) 

Height 

(inch) 

Directivity Efficiency Antenna Impedance 

(ohm) 

Thicker foam  2.6 1.3 0.064 2.6 0.58 8+j85 

Thinner foam 2.6 1.3 0.032 2.6 0.28 13+j80 

 

  For the inverted-L antenna shown in Fig. 4.5 (a), the antenna input resistance, reactance and 

VSWR in the ISM frequency band is plotted in Fig. 4.6 (a), (b) and (c), respectively. The 

VSWR in the whole frequency band is less than 1.8. In the region of 915 MHz, the VSWR is 

less than 1.2. A good impedance matching is achieved.  
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Fig. 4.6 (a) Simulated input resistance of the inverted-L antenna (with length 2.6 inch, width 1.3 inch 

and thickness 64 mils) as a function of frequency in the ISM frequency band 
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Antenna input reactance vs. Frequency
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Fig. 4.6 (b) Simulated input reactance of the inverted-L antenna (with length 2.6 inch, width 1.3 inch 

and thickness 64 mils) as a function of frequency in the ISM frequency band 
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Fig. 4.6 (c) Simulated VSWR of the inverted-L antenna (with length 2.6 inch, width 1.3 inch and 

thickness 64 mils) as a function of frequency in the ISM frequency band 
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Fig. 4.7 (a) Simulated directivity pattern of the inverted-L antenna (with length 2.6 inch, width 1.3     

      inch and thickness 64 mils)  in elevation plane (phi = 0 degree) 
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Fig. 4.7 (b) Simulated directivity pattern of the inverted-L antenna (with length 2.6 inch, width 1.3  

                   inch and thickness 64 mils)  in elevation plane (phi = 90 degree) 
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Directivity in Azimuthal Plane 
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Fig. 4.7 (c) Simulated directivity pattern of the inverted-L antenna (with length 2.6 inch, width 1.3  

                  inch and thickness 64 mils)  in azimuthal plane (theta = 90 degree) 

 

  Fig. 4.7 (a) shows that the directivity in the elevation plane (phi = 0 degree) varies from 3.3 

dBi to 3.9 dBi. Fig. 4.7 (b) shows that the directivity varies from 3.2 dBi to 3.3 dBi in the 

elevation plane (phi = 90 degree). Fig. 4.7 (c) shows that the directivity varies from 3.2 dBi 

to 4.2 dBi in the azimuthal plane. The 2D directivity plots illustrate that the inverted-L 

antenna has an approximately omnidirectional radiation pattern with directivity bigger than 

3.2 dBi, which is a significant value for RFID transponder antenna. When the RFID tag 

antenna is attached to a large metal surface, from 0 to 180 degree, the RFID tag should be  

able to be read at almost equal distance. 

  A 3D directivity pattern is plotted in Fig. 4.8, which further supports the conclusion that the 

directivity varies from 3.2 dBi to 4.16 dBi everywhere above the ground plane. 
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Fig. 4.8 3D directivity pattern of the antenna by HFSS simulation 
 
 
  

 

Fig. 4.9 The Symbol RFID handheld reader (MC9000-G) is the test equipment 

 

  Fig. 4.9 shows the picture of the Symbol RFID handheld reader (MC9000-G) we used to  

test the metal surface mounted RFID transponders. Fig. 4.10 shows a picture of how we did  

the field test. 
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Fig. 4.10 The way we field test the reading range 

 

4.2.4 Comparison with the published results 

   Based on the literature, a few metal surface mountable RFID tag antennas have been 

reported.   

  From [40], the author proposes a 3-layer antenna design which has a horizontal size 10 cm 

by 8 cm and thickness 6.455mm, which has a radiation efficiency of 0.6753 and directivity 

4.347. Without any doubt, based on this performance, the area and the height are too big. It is 

a multilayer structure built on Teflon, so it is more expensive to manufacture.  

   From [41], the authors propose a two-layer structure by using a traditional planar inverted-

F antenna. It has a thickness 3 mm and width 45 mm. The deficiency is that the antenna 

needs two ground connections. It uses Teflon as the substrate. The two shorting plates to 

ground are in opposite direction, which increases the cost of the fabrication.  The best 

performance is about 5.1 m. For this performance, it is still too wide and too thick.  
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  Based on [30-33], all of the antennas use an inverted-F antenna structure and are mountable 

on metal. They demonstrates decent reading range but the downside is that they need a 

relatively expensive substrate material (Teflon), complicated fabrication process, a thick 

substrate ( 3 mm ~ 4mm) and occupy relatively large areas.  

  From [46], Kansas University claims that by using about 60 mil thick high density 

polyethylene, an antenna size of 4 inch by 5.5 inch can achieve a 20 feet reading range. With 

the same performance, our antenna is only 1.3 inch by 2.6 inch and made using very 

inexpensive and low dielectric constant foam. Their antenna structure with a higher dielectric 

constant is still 6.5 times bigger than our invention made by foam.  

  From US patent No.6329915, the inventers proposed a method of using a high dielectric 

constant material to reduce the size of the antenna and the distance between antenna and the 

conducting surface. The cost will be high and the reading range will be low due to the high 

dielectric material.  From US patent No. 7126479 B2, the author discloses a RFID tag which 

is attachable to a metal container by using a microstrip antenna. The microstrip antenna has a 

length of a half wavelength, which is two times larger than our invention (less than a quarter 

wavelengths).  From US patent No. 6278369, the inventors present an inverted-F antenna to 

be applied to conductive surface, but it needs two ground connections and a very thick 

substrate.  From US patent No. 6914562, a surface insensitive antenna structure is proposed.  

To our knowledge, this kind of antenna doesn’t work well on a metal surface.  

   In conclusion, no ideal solution for a RFID tag mountable on metal has been invented prior 

to this work. The slotted inverted-L antenna we invented provides an ideal solution. It shows 

an approximately omnidirectional radiation pattern and enough bandwidth in the ISM (902 

~928 MHz) frequency band. It has a compact size (3 cm by 5 cm), low profile (0.8 mm or 1.6 
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mm) and good reading range all over the space. It can further be built on an inexpensive 

foam layer. The fabrication process to do the silver printing and folding is relatively simple. 

Overall, it is an ideally low cost solution.  

 

4.3 An ultra thin and high gain metal-surface mounted RFID transponder 

antenna with a symmetrically slotted patch  

4.3.1 Introduction 

   All of the known commercially available solutions to make the RFID tag antenna working 

on metal are not long reading range solution. To reach a better reading range, the only way in 

the present industry is to increase the thickness of the substrate. For a 12 feet reading range, 

it needs an antenna which is 5.8 inch long, 1 inch wide and 0.2 inch thick. Due to the 

complicated antenna structure, the cost is about $4 ~ $6 each, which is too expensive and too 

thick for this performance.   In the literature [40] [41] [42] [43] [44] [45], the best reported 

reading range for an RFID tag is 5.1 m.  The substrate thickness is at least 3 mm. Our 

inverted-L antenna [38] with 62 mils thickness has a reading range typically from 20 feet to 

25 feet. In order to achieve a larger reading range, the gain of the antenna should be 

increased.   

    In this section, we present an ultra thin and high gain metal-surface mounted RFID tag 

antenna without requiring a ground connection. Our invention proposes a new antenna 

structure built on much less expensive foam substrate, which has only 32 mils thick, 1.9 inch 

wide and 5.2 inch long. It demonstrates a reading range more than 32 feet when it is tested by 

a Symbol RFID handheld reader (MC9000-G) with 4 W EIRP.   
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  Based on a 3D Electromagnetic simulation, it has directivity bigger than 8.45 dBi but 

maintain a radiation efficiency of about 30% for a 32 mils thick substrate. For a thicker 

substrate such as 64 mils, the efficiency can be as high as 54% but the antenna maintains the 

same directivity, which means a higher reading range ( longer than 40 feet) is achievable.  

 

 4.3.2. Structure and performance of the slotted RFID antenna patch 

  Fig. 4.11 (a) and (b) shows an antenna structure which is built on foam. The antenna has a 

horizontal size 5.2 inch by 1.9 inch and a thickness of 32 mils.  The reading range is more 

than 32 feet at 4 W EIRP.  
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Fig. 4.11 (a) Plan view of a novel slotted microstrip RFID antenna built on foam 
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Fig. 4.11 (b) Cross section view of a novel slotted microstrip RFID antenna built on foam 
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Fig. 4.12 shows the plan view of the novel slotted microstrip antenna for RFID transponder 

built on foam with a different feeding structure. 
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Fig. 4.12 Plan view of a RFID antenna with a different feed built on foam 

 

  By using a substrate with a higher dielectric constant, the horizontal size can be further 

decreased to 4 inch by 1.9 inch. An antenna with the geometry shown in Fig. 4.13 has a  

tested reading range more than 32 feet. If a smaller size is more desired rather than the long 

reading range, the antenna size can be decreased to 0.9 inch wide and 3.8 inch long, which 

still has more than 18 feet reading range.  
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radiation patch
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Fig. 4.13 (a) Plan view of a novel slotted microstrip RFID antenna built on RT/DUROID® R 5880 
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Fig. 4.13 (b) Cross section view of a novel slotted microstrip RFID antenna built on RT/ DUROID®  

        R 5880  
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Fig. 4.14 Plan view of a novel slotted microstrip RFID tag with multiple slots and smaller size built  

              on RT/DUROID® R 5880  

 

 

Fig. 4.15 The picture of the proposed slotted microstrip RFID antenna built on foam. 

 

As shown in Fig. 4.14, the horizontal size can be further decreased by introducing multiple  
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slots in the radiation patch.  Fig. 4.15 shows the fabricated slotted microstrip RFID built on 

one layer (32 mils thickness) foam substrate. 

 

                      

               (a)                  (b) 

                            

   ( c)      (d) 

Fig. 4.16 (a) (b) (c) (d) The pictures of the proposed slotted microstrip RFID antenna built on Rogers  

                RT/DUROID® R 5880 
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  Fig. 4.16 (a) (b)(c)(d) shows the pictures of the various fabricated slotted microstrip RFID 

antenna built on RT/DUROID® R 5880.   

 

 

Fig. 4.17 Simulated VSWR of the proposed RFID tag antenna shown in Fig. 4.15 made on foam 

 

  The simulated VSWR of the invented RFID tag antenna shown in Fig. 4.15 is plotted in Fig. 4.17, 

which is less than 2 in the ISM frequency band.  

  The antenna shown in Fig. 4.15 has a directivity pattern in the elevation plane plotted in Fig. 

4.18. The directivity pattern at the azimuthal plane derived by HFSS is plotted in a solid line. 

The measured directivity pattern is plotted in a dashed line, which is calculated based on the 

reading distance. It is normalized to the calculated maximum directivity. The simulated 

results shows a maximum directivity about 7 or 8.45 dBi, which is about twice as large as the 

inverted-L antenna. The price paid is a larger horizontal size. The antenna shows a half 

power bandwidth (HPBW) about 45 degree and a first null bandwidth (FNBW) 90 degree. 
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The antenna has a gain about 3 dBi even at the horizontal angle of 60 degree, which is 

desired for RFID application. 

 

 

Fig. 4.18 Simulated and measured directivity pattern (numeric value) in the azimuthal plane for the 

  antenna shown in Fig. 4.17 
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  The 3 D directivity pattern is plotted in Fig. 4.19, which shows the radiation pattern is 

symmetrical about the vertical direction. 

  Compared with any other known long range (larger than 20 feet) metal-surface mounted 

RFID tag, this invention represents the thinnest structure, the smallest size, the lowest 

fabrication cost and better reading range. 
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Fig. 4.19 A 3D directivity pattern of the slotted microstrip antenna derived by HFSS 

 

4.4 Antenna differential input impedance measurements 

   In the RF world, almost always people are dealing with single ended circuits which have an 

immediate reference to ground. The commonly used network analyzer such as HP85047A in 

our lab uses 50 ohms coaxial cable and is designed for that purpose. The RFID antenna is 

unfortunately a differential structure. The network analyzer using coaxial cable is not able to 

measure the differential input impedance since the coaxial cable is unbalanced. It is a well 

known technology to use a BALUN (balance to unbalance) to measure or feed differential 

circuits. However, building a broadband BALUN is extremely difficult and expensive.  

   In order to do broadband measurements for the differential antenna input impedance, a way 

based on matrix transformation is applied to do that.  
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Fig. 4.20 Two-port S parameters measurements 

 

  As shown in Fig. 4.20, the two-port S parameters are measured by using the single ended 

two-port network analyzer and coaxial cables. Then the S matrix is transformed into a Y 

matrix using the following equations [20], 
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  In Fig. 4.21, the Y matrix is derived from the measured S matrix by equations (4.1) to (4.4). 

A differential voltage source is then applied to the input terminals. Then the differential input 

impedance can be easily found based on the two-port Y parameters. The method is accurate  
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for any frequency range. The final derived input admittance is derived as,  

11 12 21 22
12

11 12 21 22

( )( )
in

Y Y Y YY
Y Y Y Y

Y+ +
=

+ + +
−      (4.5) 
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Fig. 4.21 Differential input impedance is derived by the two-port Y matrix 

 

4.5 Analysis of a planar RFID antenna  

  A full-wave 3D EM simulation tool like HFSS [10] is able to model a complicated antenna 

structure. The simulated results like radiation pattern and input impedance are shown in 

sections 4.2 and 4.3. To gain a better understanding of the antenna, in this section we use  the 

slotted inverted-L antenna as an example to demonstrate how to analyze the antenna input 

impedance by using transmission line theory.  We’ll show even though the transmission line 

modeling is good for predicting the input impedance of the antenna, it is not sufficient to 

predict the radiation efficiency if the radiation impedance of the antenna is ignored. A simple 

resonator model is proposed to model the power loss due to the substrate and finite 
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conductivity of the metal. The effect of the substrate tangent loss on the radiation efficiency 

is analyzed in detail.  

 

4.5.1 Antenna input impedance  

  The input impedance of a transmission line with characteristic impedance 0Z , length d and 

load impedance lZ is expressed as [47], 
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                      (4.8) 

where γ  is the propagation constant, α is the attenuation constant and β  is the phase 

constant.  

  The radiation impedance of the RFID microstrip antenna is difficult to be accurately derived 

analytically although some approximate formulas are available. For a better accuracy, the 

radiation impedance of a microstrip line with line-width of W is derived by HFSS simulation. 

For an open ended microstrip transmission line, when the length of the microstrip line is set 

to be a half wavelength at the design frequency, the input impedance is equal to the load 

impedance, which will be the radiation impedance. The transverse current in the microstrip 

antenna can’t be modeled by transmission line equations since the transmission line model is 

based on a TEM plane wave approximation and only longitudinal current is considered. The 

effect of the transverse current is modeled as inductors, which are derived by the unit 

inductance of the transmission line in the transverse direction.  A microstrip line built with 
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RT/DUROID® R 5880 with a thickness of 62 mils, a width of 1 inch has the radiation 

impedance 18-j197 ohms. The whole inverted-L antenna shown in Fig. 4.22 (a) is divided 

into six transmission lines sections connected by three inductors.  The following derivation 

gives the formula to calculate the inductance of the microstrip line, 

               0
LZ
C

= ,    2
0

L Z
C
=             (4.9) 

1v
LC

= , 2

1LC
v

=                        (4.10) 

     
2

2 0
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    00 rZZL
v c

ε
= =             (4.12) 

where v is the wave velocity, rε is the relative dielectric constant of the substrate dielectric, 

is the inductance per unit length and C is the capacitance per unit length. The characteristic 

impedance was derived by LineCalc in ADS 2005. Then the input impedance can be 

calculated by (4.6).  To facilitate the calculation, an ADS modeling is setup and the input 

impedance is computed by the software. The modeling interface is shown in Fig. 4.22 (b).   

L

    The ADS simulation shows the antenna input impedance equal to 11.8+j61.0 ohms, which 

is close to 15.0+j120.0 ohms derived by HFSS simulation at 915 MHz.  The impedance 

difference may come from an inaccurate inductance modeling of the small circular loop in 

the feeding area. The result of ADS simulation is shown in Fig 4.23.  Fig 4.23 (a) plots the 

radiation impedance of the microstrip line. After adding a less than quarter- wavelength 

transmission line (TL), the input impedance is shifted close to the short point in Smith Chart, 

which is plotted in Fig. 4.23 (b). Fig 4.23 (c) shows the input impedance of the grounded  
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Fig. 4.22 (a) Model the slotted inverted-L RFID antenna using transmission line and inductors 
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Fig. 4.22 (b) The corresponding ADS transmission line modeling of the inverted-L antenna  
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Fig. 4.23 The input impedance of the RFID tag antenna by transmission line modeling 
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short stub, which represents a small inductance. The parallel combination of Fig. 4.23 (b) and 

(c) generates the desired antenna impedance, which is shown in Fig 4.23 (d). The antenna 

surface current on the top metal layer is plotted in Fig. 4.24. It reaches the minimum at the 

radiation slot or open end. It has the maximum value at the feeding area. As shown in Fig. 

4.25, the E field distribution has the maximum value at the radiation slot or open end. It has 

the minimum value at the feeding area. The results are predictable based on transmission line 

theory. By virtue of the equations from [47], the voltage and current distribution on a loaded 

lossless transmission can be written as,  

0( ') cos( ') sin( ')L
L

ZV z V z j z
Z

β β
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

         (4.13) 

0

( ') cos( ') sin( ')L
L

ZI z I z j z
Z

β β
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

           (4.14) 

                                  (4.15) L LV I Z= L

  The load impedance is equal to the radiation impedance, which is 18-j197 ohms. The 

characteristic impedance of a width 1000 mils microstrip line RT/DUROID® R 5880 derived 

by LineCalc is 13.5 ohms. Therefore the characteristic impedance is much less than the load 

impedance. From (4.13), the first term will be dominant. Therefore an approximate standing 

wave is formed in the transmission line section, which has a voltage maximum at the load 

( ) and voltage minimum at the feeding area (' 0z = ' 1000z = mils, about 80 degree electric 

length). From (4.14), the second term is dominant. As a result, the current minimum appears 

at the load ( ) and a current maximum is on the input end (  mils). The 

theoretical analyses predict the results shown in Fig. 4.24 and 4.25.  

' 0z = ' 1000z =
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Fig. 4.24 Antenna surface current distribution 

 

     

Fig. 4.25 Antenna electric field distribution 
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4.5.2 Antenna radiation efficiency 

   Increasing the antenna radiation efficiency is a good part for the low profile microstrip 

antenna design. In this section, we’ll show that a transmission line model is insufficient to 

predict the radiation efficiency. To predict the power loss due to the substrate material, a 

simple resonator model is derived and demonstrates its effectiveness.  

  A microstrip line can be closely approximated by the parallel-plate transmission line [47]. 

The unit length resistance R, inductance L, capacitance C and conductance G are calculated 

as,  

 22
2

s

c

RR
W W

ωμ
σ

= =  , dL
W

μ= , WC
d

ε= , dG C σ
ε

=         (4.16) 

From Maxwell’s equation, the equivalent conductivity for the dielectric is derived as follows,  

"( ' ") '(1 ) '(1 tan )
'

' ' tan

H j E j j E j j E j j E

j E E

εωε ω ε ε ωε ωε δ
ε

ωε ωε δ

∇× = = − = − = −

= +
  (4.17) 

  From (4.17), the equivalent conductivity for the dielectric is derived as ' tandσ ωε δ= . 

 An inverted-L antenna made on two-layer foam has a width of 1300 mil, length of 2600 mil 

and thickness of 68 mils. The conductivity of the metal layer is cσ = s/m. The 

relative dielectric constant 

75.1 10×

rε  is 1.19. The tangent loss ( tanδ ) of the substrate material is 

0.001 at 915MHz. Based on the above parameters, the R, L, C and G of the microstrip line is 

calculated as,  

10

3

0.5096(Ω/m), 2.0134 10 (F/m),
6.573 10 (H/m), 1.157 10 (S/m)

R C
L G

−

− −

= = ×

= × = × 3
          (4.18) 
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 The characteristic impedance is calculated as 0 19.7dZ
w

μ
ε

= ≈ Ω .  

  The attenuation constant by 0
0

1 (
2

R GZ
Z

α ≈ + )  [47] is 0.0243(Np/m) or 0.21(dB/m). For a 

matched transmission line with a total length of 2600 mils, the overall attenuation due to the 

power transmission is about 0.014 dB, which means a 0.32% power loss. It is understandable 

due to the low loss material for power transmission. By a more accurate HFSS simulation, 

the antenna has a radiation efficiency of 58%. The big difference tells us that the loading 

effect of the radiation impedance should be considered to predict the radiation efficiency.  

  The radiation impedance of the microstrip line is 14.9-j177 ohms, which is equal to a 

radiation conductance  of 4.722E-4 s in parallel with a radiation capacitance of 0.976 

pF. The equivalent total capacitance  due to the RFID antenna is 13.27 pF, the total 

equivalent conductance  due to the dielectric layer is 7.64E-5 s.  

rG

lG

rC

lC

 

lR lC rR rC
Vg

 

Fig 4.26 A resonator model for the substrate loss 

  With a resonator model shown in Fig. 4.26, the overall power efficiency is determined by  

the conductance ratio,   

    0.861r
d

r l

G
G G

ε ≈ =
+

          (4.19) 

where is the radiation conductance,  is the loss conductance due to the substrate. rG lG
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Fig. 4.27 The effects of substrate tangent loss on the antenna radiation efficiency 

 

  The radiation efficiency varying with the tangent loss factor is plotted in Fig. 4.27. A more 

accurate HFSS simulation is conducted to make a comparison. The solid curve is derived 

from the simple resonator model. The solid line with an inverted triangle is the simulation 

results from HFSS by changing the real metals to PEC.  Therefore, it includes only the power 

loss due to the dielectric layer. The solid line with a circle is the simulation results from 

HFSS by applying finite conductivity to metal (5.8E7 s/m). It is clear that the power loss due 

to the finite conductivity of metal is large when the tangent loss of substrate is small. The 

power loss due to the finite conductivity of metal is reduced when the tangent loss increases.  

   From Fig. 4.27, it can be seen that even though the model is simple, it predicts the  
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efficiency relatively well. When the tangent loss of the substrate is 0.01, the 3D HFSS 

simulation gives a radiation efficiency of 0.297 with PEC; the simple model gives radiation 

efficiency of 0.38. When the tangent loss of the substrate is 0.025, the radiation efficiency is 

0.144 with PEC given by HFSS simulation and 0.2 given by the simple model.  The model is 

more accurate when the tangent loss increases. It is clear that a low loss substrate material is 

necessary to achieve a highly efficient microstrip-type antenna.  

 

4.6 Reexamine the RFID reading range 

   A RFID transponder attaches a RFID chip to an antenna.  The Symbol MC9000-G RFID 

reader is applied to do the field test. The RFID chip manufacturer specifies the typical input 

power for reading is about -13 dBm; the minimum input power for reading is -9 dBm. If the 

inverted-L antenna with a directivity 4.15 dBi and efficiency 58% is applied, from (2.65), -13 

dBm and -9 dBm input powers correspond to a reading distance of 9.05 m and 5.7m, 

respectively. Our tested results show that the folded inverted-L RFID antenna achieves 

20~28 feet reading range, which is 6.1 m ~ 8.53 m reading distance. The good agreement 

shows that the minimum input power of the RFID chip is a major limitation for the reading  

range. The minimum input power of the RFID chip is set by the low efficiency of the rectifier 

and multiplier.  

  The slotted high gain antenna has a directivity 8.45 dBi and 54% efficiency with 64 mil 

(1.63 mm) thickness. It has a theoretical reading range from 9.04m~14.3m. Our tested results 

constantly give 9.75m~11.0 m reading range. A good agreement between theoretical and 

tested results is achieved.  
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  For an active RFID, with a fixed power supply, the rectifier won’t become a limiting factor 

any more. Therefore the reading distance will be determined by the backscattering and 

sensitivity of the receiver. For a receiver with a nominal -90 dBm sensitivity, a 36.6 meter 

reading distance is achievable with the inverted-L antenna design, which is five times longer 

than the passive RFID transponder. The reading range of an active RFID transponder is 

limited by the sensitivity of the RFID reader.  
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CONCLUSION 

 

  As one of the major applications of wireless communications, RFID shows similar 

properties to the other applications. However, since it communicates by using the reflected 

power, it exhibits a distinct property.  To facilitate the task about how to improve the reading 

range of a metal surface mounted RFID transponder,   the operation principle and internal IC 

structure of a RFID reader and transponder are presented. A system level link-budget 

analysis relating the RFID reader and RFID transponder is conducted.  The major factors 

limiting the reading range are derived. It has been shown that for a passive RFID transponder, 

the low efficiency of the rectifier is the major limiting factor. For an active RFID transponder, 

the sensitivity of the RFID reader determines the maximum achievable reading range.  To be 

able to improve the reading range for an existing reader and transponder chip, the gain and 

the radiation efficiency of the transponder antenna are the only variables which can be 

improved.  

   In order to boost the radiation efficiency of a metal surface mounted RFID transponder, 

metamaterials including FSS and mushroom-like EBG surface have been studied.  Different 

from the smooth metal surface, FSS and mushroom-like EBG surfaces exhibit high 

impedance electromagnetic properties and in-phase reflection profile at a certain frequency 

band. Our study shows that for a low profile FSS and mushroom-like EBG surface, their 

reflection phase profiles have negligible difference. The measured transmission coefficients 

of TM waves or TE waves across the FSS and mushroom-like EBG surface are similar to 

each other. Both of them exhibits TM bandgap and in-phase reflection and can be named as  

EBG surfaces. 
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  With a better understanding of the TE wave across the EBG surfaces, we originally 

proposed a new equivalent circuit model. The distinct effects of TM and TE waves on the 

radiation impedance of metal-surface mounted dipole antennas are examined. Our research 

demonstrated that in the frequency range where the TM wave is suppressed but the TE wave 

is supported, the metal-surface mounted dipole antenna can be integrated onto EBG surfaces 

and achieve very good impedance matching and radiation efficiency. Even though 

metamaterials have the potential to be applied to boost the radiation efficiency, the horizontal 

dimension is relatively large for most of RFID application. To save the overall area and cost 

of RFID, two major types of antennas for RFID transponders were invented.  

One type of antennas has an inverted-L planar structure. The other type of antenna has a 

symmetric structure without physical connection to the ground. They were designed using 

inexpensive foam and RT/DUROID® R 5880 high frequency laminates. These antennas have 

an approximately omnidirectional radiation pattern, high gain, compact size and low profile.  

With a handheld reader, the reading range can be achieved more than 20 feet for the inverted-

L antenna and more than 30 feet for the symmetric antenna.  The tested reading range agreed 

well with the analytical results.  A transmission line modeling of the invented RFID antennas 

is given and proved its effectiveness to predict the input impedance of the antenna. A simple 

resonator model is proposed to relate the antenna radiation efficiency to the tangent loss of 

the substrate material. Its effectiveness is verified by HFSS simulation.  

These inventions exhibited superior performance relative to the previous solutions.  Our 

work has solved one of the largest challenges in RFID industry to make the UHF RFID 

transponders readable above metal surface and paved the road for RFID industry to expand 

their market.  
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